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Abstract

Cooperative Multi-Agent Reinforcement Learning (c-MARL) enables a team of agents to determine
the global optimal policy that maximizes the sum of their accumulated rewards. This paper inves-
tigates the security robustness of issues c-MARL to a novel adversarial threat, where we target and
weaponize one agent, termed the compromised agent, to create natural observations that are adver-
sarial for its team. The goal of compromised agent is to lure the compromised agent to follow an
adversarial policy that pushes activations of its cooperative agents’ policy networks off distribution.
This paper also propose CMDP Multi-Agent Particles environment by adding safety constraints in
original particle environments [1] and train agents in CMDP Multi-Agent Particles environments
to proof the convergence property so it can be used as a baseline for future researchers. We theo-
retically form the ideas of safety certificates so that we train agents in a two-step framework. With
safety certificates, agents learn to behavior in a safer way by assuming the worst of others by first
learning unsafe behavior and then learn to act differently from unsafe behaviors. This paper shows
mathematically the exploitation steps of compromised agent adversarial policy in the centralized-
learning and decentralized-execution paradigm of c-MARL. We also empirically demonstrate the
susceptibility of the state-of-the-art c-MARL algorithms, namely MADDPG and QMIX, to the
compromised agent threat by deploying four attack strategies in three environments in white and
black box settings. By targeting a single agent, our attacks yield highly negative impact on the
overall team reward in all environments, reducing it by at least 33% and at most 89.6%. Finally,
we provide recommendations on improving the robustness of c-MARL.

1 Introduction

The advances in single-agent Reinforcement Learning (RL) algorithms have sparked a new interest
in cooperative Multi-Agent Reinforcement Learning(c-MARL) systems. c-MARL systems contain
a team of intelligent agents working together towards a shared goal, and each agent’s state is
part of other agent’s observation, where all the agents are trained to maximize the sum of their
accumulated rewards. c-MARL training algorithms are widely applicable to cyber-physical systems,
sensor networks, and social sciences. One of the most interesting applications is autonomous driving
car. However, security and robustness need to be examined before any wide range deployment of
such system into reality, or this may cause inestimable damage to the society.

At the same time, the prevalence of Deep Reinforcement Learning (DRL) brought significant tech-
nological advancements in the AI community and different state-of-the-art algorithms allow more
effective training and more promising results. However, a common perturbation in deep learning
model, adversarial examples (carefully crafted noise that is invisible to human eye) [2], has been
shown to be effective in attack DRL system as well. Specifically, a DRL agent’s policy performance
significantly decreased by only introducing relatively small perturbations in the inputs to the DNN,
either consistently [3] or strategically [4]. However, their work mainly focused on single agent sys-
tem but did not systematically study the security of c-MARL and the effects of cooperation on
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the success of attacks. The closest work to c-MARL system only reduces the total team reward by
perturbing the observation of a single agent [5]. Those works were on the theoretical side of the
attack, and they assumed attackers knew all the information, for example the team-reward function
and the environment transition function (white-box setting), which is uncommon in real practices.
Therefore, to design a physically realistic attack model that does not depend on directly modifying
the agents’ observation with adversarial examples is important in MARL setting.

This work achieve this by only weaponizing one agent to follow a trained adversarial policy that
confuses its teammate by pushing activations of its cooperative agents’ policy network off distri-
bution. The primary motivation of this work is to develop a systematic methodology for designing
non-trivial adversarial attacks which can efficiently and effectively exploit the vulnerabilities of c-
MARL to design more robust algorithms. Such method is termed compromised agent vulnerability.
This idea is related to domains such as autonomous driving platoons [6] and automated scalping
trading [7] where it is not usually feasible for the adversary to directly change the victim policy’s
input via adversarial examples; it can only modify the victim agent’s observations via its own ac-
tions. For example, in financial trading, an adversary can send orders to an exchange market which
will appear in the victim’s market data feed, but the attacker cannot modify the observations of a
third party’s orders.

Furthermore, after successfully attacking the system, defense method needs to be develop to po-
tentially mitigate attacks. This work proposed the idea of safety certificate to ensure safety against
sensor noise, adversarial examples, and malicious actions by compromised agent during runtime.
The objective for the certificate is to develop a lower bound of safety by assuming other agents
in c-MARL system perform the worst-case actions. With safety certificate, agents are assumed to
be cautious about their teammate’s action until trust can be established through observations of a
series of actions. The idea of safety certificate is inherent in human’s cognitive ability. For example,
assumes a world that autonomous driving car is widely deployed, and the car is trained to follow
traffic rules. When a pedestrian want to cross the street, the pedestrian will never risk his or her
life by crossing the street without ensuring the car stop in front of the zebra crossing. In human’s
cognitive consciousness, we are always cautious about our surroundings and assume the worst of
others until trust can be established. Therefore, safety certifications uses similar ideas to make sure
agents act ’cautiously’ and think ’vigilantly’ to its teammate’s actions. This thesis answered two
questions: 1) How can we define the worst behavior of others? and 2) How can we be ’cautious’ to
those behaviors?

To summarize, this work will primarily contains two part: 1) we designed a systematic attack
methodology that exploit the vulnerability of c-MARL system for MADDPG [1] and QMix [8]
Algorithm and empirically analyze the impact of this vulnerability in three different RL environ-
ments. We designed four specific attack strategies to exploit the compromised agent vulnerability
in c-MARL in both white-box and black-box settings, and 2) we designed a defense mechanism in
c-MARL system for proposed attack called safety certificate. We proposed the three-step theoret-
ical framework for safety certificate that extends the idea of AdvEx-RL [9] from single-agent to
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multi-agent setting, modified the multi-agent particle environments into Constraint Markov Deci-
sion Process (CMDP) setting, and prove the convergence property of training c-MARL agents in
CMDP RL environments. We show that training agents until optimal policy doesn’t necessarily
means safety is also ensured. The contributions are summarized as followed:

1. We show the feasibility of the compromised agent vulnerability by reverse-engineering the
algorithms in the centralized-learning decentralized-execution paradigm of c-MARL.

2. We design four attack strategies to demonstrate the impact of the compromised agent vul-
nerability on the robustness of c-MARL algorithms.

3. We thoroughly analyze the robustness of the c-MARL algorithms MADDPG [1] and QMIX
[8] under our attacks in three different environments involving cooperative and competitive
tasks. The designed attacks bring down the team reward in all environments by at least 33%
and at most 89.6%.

4. We proposed the Multi-Agent CMDP environments baseline by modifying the multi-agent
particle environments and prove the convergence properties.

5. We proposed the three step theoretical framework for adding safety certificate to agents in
c-MARL system.

2 Background and Related Works

This section presents the background information necessary to fully understand our proposed attack
strategies on c-MARL and CMDP, and discusses the related work on security and robustness in
c-MARL system.

2.1 Reinforcement Learning (RL)

RL provides an agent with a framework to interact with its surrounding environment and receive
feedback signals. RL algorithms use these feedback signals to improve the decision-making policy
of the agent. More specifically, the agent interacts with the environment in a series of discrete
timesteps, indexed by t = 0, 1, 2, 3, . . . , T , where T is the end of a single environment trajectory
called an episode. At each timestep within an episode, the agent observes a representation of the
environment called the state and denoted by st ∈ S, where S is the set of all possible states. The
agent then chooses an action at ∈ A, where A is the set of all possible actions, using its policy
π. The probability that action a will be chosen by the agent given state st is denoted by π(a|st).
The environment’s transition function decides the resulting next state in timestep t + 1, where
p(st+1|a, St) is the probability of state st+1 resulting from an agent taking action a in state st.
Following each action, the agent receives a reward based on the outcome of its action in st, hence
Rt+1 = R(st, st). The goal of an RL agent is to maximize the expected sum of rewards over the
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course of an episode, or the return denoted by Rt =
∑∞

k=0 γ
krt+k.

2.2 Cooperative Multi-Agent Reinforcement Learning (c-MARL)

In this paper, we model the c-MARL system using stochastic games [10]. For an n-agent stochastic
game, we define a tuple:

G =
(
S,A1, ..., An, r1, ..., rn, T, γ

)
(1)

where S denotes the state space, Ai and ri are the action space and the reward function for agent
i ∈ 1, ..., n, respectively. γ is the discount factor for future rewards, and T is a joint state transition
function T : S × A1 × A2.. × An → △(S) where △(S) is a probability distribution on S. Agent
i chooses its action ai ∈ Ai according to its policy πi

θi
(ai|s) parameterized by θi conditioning on

some given state s ∈ S. The collection of all agents’ policies πθ is called the joint policy where θ
represents the joint parameter. For convenience, we interpret the joint policy from the perspective
of agent i as:

πθ = (πi
θi(a

i|s)π−i
θ−i(a

−i|s)) (2)

where a−i = (aj)j ̸=i, θ
−i = (θj)j ̸=i, and π−i

θ−i(a
−i|s) is a compact representation of the joint policy

of all complementary agents of i [11]. At each stage of the game, actions are taken simultaneously.
Each agent is assumed to pursue the maximal cumulative reward [12] expressed by:

max ηi(πθi) = E

[ ∞∑
t=1

γtri(st, a
i
t, a

−i
t )

]
(3)

with (ait, a
−i
t ) sample from (πi

θi
, π−i

θ−i). Correspondingly, for a game with an infinite time horizon,

the state-action Q-function can be defined by Qi
πi
θ
(st, a

i
t, a

−i
t ) = E

[ ∞∑
l=0

γlri(st+1, a
i
t+1, a

−i
t+1)

]
.

The centralized-learning and decentralized-execution paradigm of MARL has been followed by the
major c-MARL algorithms including MADDPG [1], COMA [13], MF-AC [14], and Q-Mix [8].
Although those algorithms simplify the learning in multi-agent environments by using the non-
correlated factorization of the joint policy, they are vulnerable to the compromised agent attack
shown in this paper. This vulnerability arises when the implicit connections among the agents’
actions are ignored. Agents trained with such algorithms cannot efficiently identify the normal
and abnormal behaviors of other agents working together to accomplish certain tasks. This paper
focuses on attacking MADDPG [1] and QMIX [8], the lead algorithms in the centralized-learning
and decentralized-execution paradigm.
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2.3 Constraint Markov Decision Process (CMDP)

We consider the standard CMDPs, M = (S,A, µ,P(.|., .),R, γ, C) where S and A denote the state
and action space; µ and P : S × A × S −→ [0, 1] denote the initial state distribution and state
transition dynamics respectively. R : S ×A −→ R is the reward function; γ denotes discount factor;

and C = {ci : S×A S−→ R ≥ 0; i = 1, 2, .., T} denotes the set of cost associated with safety constraint
violations in any trajectory episode τ = {s0, a0, ..., aT−1, sT } with a maximum trajectory length
of T . We assume that accomplishing the task goal or violating a safety constraint in M leads to
episode termination.

2.4 Related Work on Adversarial Attacks and Defense in MARL

Previous work has shown the vulnerability of individual RL agents to adversarial attacks, in which
the adversary perturbs the agent’s observation to degrade its performance [3]. Other attacks re-
duce the number of adversarial examples needed to decrease the agent’s reward [4] or trigger its
misbehavior [15]. However, the literature did not study the security of c-MARL and the effects of
cooperation on the success of attacks. The closest work to our proposed threat model and attack
strategies proposes a two-step attack against QMIX with the objective of reducing the total team
reward by perturbing the observation of a single agent [16]. The authors extend an existing adver-
sarial example method, namely JSMA [17], to create d-JSMA which is more suitable for attacking
an RL model with a low-dimensional feature space. They focus on white-box settings to launch
their attack by assuming the knowledge of the team reward function. The approach proposed in
this paper is fundamentally different since it involves a physically realistic attack model that does
not depend on directly modifying the agents’ observations with adversarial examples. Instead,
we weaponize one agent to follow an adversarial policy that pushes activations of its cooperative
agents’ policy networks off distribution. We also conduct our attacks in both white and black box
settings against QMIX and MADDPG in three different environments. Also, compared to the work
of Lin et al. [16] which focuses on attacks in the competitive multi-agent setting, our threat model
considers cooperative teams of agents in both fully-cooperative and competitive environments.

Previous defense work has also been focused on single-agent setting. The idea of Adversarial
Behavior Exclusion framework (AdvEx-RL) trains an adversarial policy to interactively extract
unsafe behaviors followed by learning a safety policy by maximizing the divergence from such
adversarial policy [9]. The approach in this paper proposed a great framework of ensuring safety
against unsafe behaviors. However it is only focused on single-agent setting that considers unsafe
behaviors of itself. Another paper develop an online certifiable robust for DRL algorithms that
consider to create a observation perturbations to defense against noise or adversarial examples [18].
However, directly modifying an agent’s observation (state) is unrealistic in real-world setting, as
mentioned in Section 1. These two works motivate us to develop a action perturbation method in
MARL settings against malicious actions taken by one of the agents using counterfactual reasoning
about the worst actions that can be taken by other agents.
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3 Method: Compromised Agent Vulnerability

We first describe the threat model and assumptions we made during attack and defense. We will
then mathematically explain how an adversary can exploit the compromised agent vulnerability.

3.1 Threat Model

We have theoretically formed the threat model for this attack. We assume that the attacker can
take over at least one benign agent (the compromised agent m) and use it to create naturally
adversarial observations via its actions to attack the other agents m in the system. This threat
targets the agents’ actions instead of the states’ features usually targeted by adversarial examples
[2] [3] [4]. The attacker can only intercept the compromised agent’s actions via network attacks such
as hijacking, impersonation, and Man in The Middle (MiTM). Studies have shown that multi-agent
systems are vulnerable to such attacks [19]. The attacker’s goal is to weaponize actions taken by the
compromised agent to distract team members from accomplishing their task either by preventing
them from converging to the optimal policy or misleading them to a dangerous state.

In the white-box setting, the adversary may have access to the environment’s reward function,
the policies of every agent in the system, and the ground truth state transition function p(st +
1|st, a0, . . . , an), where st is the concatenation of each agents’ observations (o1, . . . , on). Conversely,
a black box adversary has no access to the internal configuration, rewards, or policies of benign
agents including the compromised one. We also assume that all agents, including the compromised
one, follow fixed policies corresponding to the common case of a pre-trained model deployed with
static weights. This model holds particularly well for safety-critical systems, where it is a standard
practice to validate a model, then freeze it, to ensure that it does not develop any new problems
due to training [20].

Since the agents’ policies are held fixed, the Markov game G in Eq. (1) reduces to a single-player
MDP, denoted by Gm = (S,Am, Tm, Rm), that the adversary must solve to generate a new policy
by which the compromised agent m will achieve the adversary’s goal of attacking the other agents
−m.

The compromised agent problem in c-MARL is defined by:

max

t=T∑
t=0

KL (p(a−m
t |amt , st)||p(a−m

t |a∗mt , st)) (4)

where a∗m represents the adversarial actions generated by the adversarial policies for the compro-
mised agent m. This equation maximizes the KL-divergence between the conditional policy of −m
on the action am at time t and the same conditional policy if agent m deviates from its policy and
takes an adversarial action a∗m. The adversary can then intervene on amt by replacing it with the
action a∗mt which will be used to compute the next action of agents −m, p(a−m

t+1|a∗mt , smt ), pushing
the activations of their policy networks off distribution. Practically, we solve the problem in Eq.
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Figure 1: The architecture of the deep learning-based behavioral cloning.

(4) by finding the adversarial actions a∗m for the compromised agent following one of the proposed
attack strategies in Section 3.3 to maximize the KL-divergence.

3.2 Exploiting The Compromised Agent Vulnerability

We now show the steps of exploiting the compromised agent vulnerability in the centralized-learning
and decentralized-execution c-MARL algorithms. The goal is to reverse engineer the learning algo-
rithm by correlating the learning process of agent m’s policy with the learning of the conditional
policies of agents −m. First, we collect state-action pairs by observing the agents during recon-
naissance as a trajectory τ = [(s1, a

m
1 , a−m

1 ), ..., (st, a
m
t , a−m

t )]. We use τ for training an Adversarial
Inverse RL (AIRL) algorithm [21] to discover the hidden reward function behind agent m’s behav-
ior, rm(st, a

m
t , a−m

t , st+1), while considering the actions taken by the other agents a−m
t as part of

the environment state.

The second step is to reverse engineer the joint policy in Eq. (2) to approximate the agents’ policies.
The joint policy can be reformulated as [22, 23]:

πθ(a
m, a−m|s) = πm

θm(a
m|s)π−m

θ−m(a
−m|s, am)︸ ︷︷ ︸

Compromised agent’s perspective

= π−m
θ−m(a

−m|s)πm
θm(a

m|s, a−m)︸ ︷︷ ︸
other agents’ perspective

(5)

From the perspective of the compromised agent m, the first equality in Eq. (5) indicates that the
joint policy can be essentially decomposed into two parts: agent m’s policy and the conditional
policies of agents −m. The conditional part of the first equality π−m

θ−m(a
−m|s, am) represents what

actions would be taken by victim agents −m given the fact that they know the current environment
state and agent m’s action, i.e., what the compromised agent believes the other agents might think
based on their original policy.
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In the white-box setting, the adversary has direct access to the agents’ policies and the ground
truth of the state transition function. In the black-box setting, the adversary needs to develop an
approximation of the transition function and the conditional policies of the victims π−m

θ−m(a
−m|s, am)

via the behavioral cloning model depicted in Fig. 1, which is trained by minimizing the loss function
L(a, πθ) to approximate each agent’s policy ρ−m

ϕ−m(a
−m|s, am). The supervised learning model for

the state transition function is similar to the behavioral cloning model with multiple heads but
with different learnable parameters Φ:

TΦ = p(st+1|st, a1, ..., an) (6)

By approximating the actual policies of the victims −m, the learning task for the compromised
agent m can be formulated by:

argmax
θm,ϕ−m

(
πm
θm(a

m|s)ρ−m
ϕ−m(a

−m|s, am)
)

(7)

With the learning protocol in Eq. (7), the adversary can learn the compromised agentm’s policy and
approximate the conditional policy of the victim agents −m given m’s actions using probabilistic
RL [24]. We first derive the probability of τ being observed during the reconnaissance phase as
follows:

p(τ) =
[
p(s1)

∏T
t=1 p(st+1|st, amt , a−m

t )
]
exp

(∑T
t=1 r

m(st, a
m
t , a−m

t )
)

(8)

Since we used AIRL to discover rm using τ , the goal becomes to find the best approximation of
πm
θm(a

m
t |st)ρ−m

ϕ−m(a
−m
t |st, amt ) to maximize Eq. (7) such that the induced trajectory distribution

p̂(τ) can match the ground-truth of trajectory probability p(τ):

p̂(τ) = p(s1)

T∏
t=1

p(st+1|st, amt , a−m
t )πm

θm(a
m
t |st)ρ−m

ϕ−m(a
−m
t |st, amt ) (9)

We can now optimize the approximated policies of the victim agents by minimizing the KL-
divergence between Eq. (8) and Eq. (9):

KL(p̂(τ)||p(τ)) =

−Eτ p̂(τ)[logp(τ)− logp̂(τ)] =−
t=T∑
t=1

Eτ p̂(τ)

[
rm(st, a

m
t , a−m

t ) +

H
(
πm
θm(a

m
t |st)ρ−m

ϕ−m(a
−m
t |st, amt )

) (10)

where H is the conditional entropy on the joint policy that potentially promotes the exploration
for both the malicious agent m’s best action and the victims’ conditional policies. Minimizing Eq.
(10) yields the optimal Q-function for agent m (Theorem 1 in [22]):

10



Figure 2: The steps of exploiting the compromised agent vulnerability.

Qm
πθ

= log

∫
a−m

E(Qm
πθ
(s, am, a−m))da−m (11)

The corresponding −m conditional policy becomes:

ρ−m
ϕ−m(a

−m
t |st, amt ) =

1

Z
E(Qm

πθ
(s, am, a−m)−Qm

πθ
(s, am)) (12)

To solve Eq. (12), we maintain two Q-functions and iteratively update them using the learned
reward function for agent m and the observations in τ as the ground-truth. Eq. (11) approximates
the original policy of m while considering the approximated conditional policies of agents −m in
Eq. (12). The overall steps of exploiting the compromised agent vulnerability are shown in Fig. 2.
For the proof of Eq. (11) and Eq. (12), please check [22].

3.3 Attack Strategies

According to Fig. 2 and Eq. (10), we still need to generate the adversarial policies for the com-
promised agent to choose a∗mt . In this section, we introduce our attack strategies to generate those
policies under two different categories: attacks based on the compromised agent’s self-destruction
strategies, and attacks based on destructive strategies of other agents’ objectives.

3.3.1 Self-Destruction Adversarial Policies

This category focuses on minimizing the compromised agent’s individual reward which indirectly
reduces the reward of the c-MARL team.

Randomly-Timed Attack: We attack the victims’ policies by developing a set of randomized off-
distribution adversarial policies for the compromised agent to sabotage the c-MARL system through
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its own actions. At a certain percentage of timesteps, the adversary changes the compromised
agent’s action into a∗mt based on a random off-distribution policy.

Strategically-Timed Attack: This attack strategically selects a subset of timesteps to change the
compromised agent’s actions. We first calculate the c-function [4]:

max
at

(πm(st, at))−min
at

(πm(st, at)) > β (13)

and launch the attack if c > b, where b is a chosen threshold that indicates the desired attacking
rate. The idea behind this attack is that the adversary chooses to alter the compromised agent’s
action only when it strongly prefers a specific action (the action has a relative high probability),
which means that it is critical to perform that action; otherwise, its accumulated reward will be
reduced.

3.3.2 Adversarial Policies for Destructing Other Agents

The other method to attack c-MARL algorithms is to sabotage the objectives of the other agents
in the system using the compromised agent’s actions, which directly pushes activations of c-MARL
agents’ policy networks off-distribution.

Counterfactual Reasoning-Based Attack: This attack predicts the compromised agent’s counterfac-
tual reasoning process about how its actions will affect the other agents and then postulates actions
that would enable it to achieve maximal destruction of the system. We design a reward function
for an RL agent to generate a long-term policy that replaces the original actions amt , ..., amt+l to
the best set of adversarial actions a∗mt , .., a∗mt+l. The RL agent would choose certain timesteps to
attack instead of attacking each timestep based on how much divergence the attack is expected to
produce. To do so, the reward function is crafted as follows:

ratt =
l∑
t

γt KL
(
p(a−m

t |amt , st) || p(a−m
t |a∗mt , st)

)
(14)

where a∗m represents the set of counterfactual actions to the action am generated by the original
policy of agent m, πm

θm , and γ is a discount factor. The attack starts at timestep t, and l is the
number of steps into the future when the attacker wants the event to take place. Eq. (14) generates
a combination of actions a∗mt , ..., a∗mt+l for which the success rate is the highest possible. We train
this adversarial policy using DDPG.

Zero-Sum Attack: We train another RL agent to learn an adversarial policy minimizing the global
reward of the c-MARL system. We formulate this attack as a single agent RL problem to minimize
the cumulative reward for the whole team as:

θm

∞∑
t=1

γtrt(st, a
∗m
t , a−m

t , st+1), (15)
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where a∗mt is the compromised agent’s action at timestep t, θm parameterizes the compromised
agent’s policy, and rt is the global reward recovered by [21]. (a∗mt , a−m

t ) is sampled from (πm
θm , π

−m
θ−m)

in the white box setting. In the black box setting, we sample from the approximated policies derived
in Eq. (11) and (12). With Eq. (15), we train an adversarial policy that selects actions for the
compromised agent that will minimize the reward r for the c-MARL team. In our implementation,
we use DDPG to train this adversarial policy.

4 Method: Safety Certificates

4.1 CMDP for Multi-Agent Particle Environments

Constraint Markov Decision Process (CMDP) are environments that agents interacts with under
certain constraints. It sets a specific goal for the agents to learn (through reward function) while
associated cost with any safety violation behavior. For example, in continuous MuJoCo CMDPs
(Maze, Navigation 1, and Navigation 2), agents need to reach the goal while also avoiding collisions
with obstacles in the environment [25]. Based on the best of our knowledge, however, there are
no CMDP environments in multi-agent settings. We constructed standard CMDPs for nine Multi-
Agent Particle Environment [1] by adding safety violations to the environments (details to be find
in the original paper). The environments, some of which shown on Figure 3, typically consists of N
agents and L landmarks in a two-dimensional world with continuous space and discrete time. Some
environments are fully cooperative (all agents need to maximize a shared return) or cooperative-
competitive (some agents have conflicting goals). As an example, the third image of Figure 3,
Cooperative Navigation, is a fully cooperative environments where agents must cooperative through
taking actions to over all the landmarks. They need to observe the positions of others learns to
’cover’ all the landmarks.

Figure 3: Visualization from left to right: 1) Cooperative Communication (simple speaker listener),
2) Predator-Prey (simple tag), 3) Cooperative Navigation (simple spread), and d) Physical Decep-
tion (simple adversary).

Assume N agents are in the environments, cost c is defined for each individual agents, and can be
reported individually for cooperative-competitive environments, and both individually or as a sum
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for fully cooperative environments. The value of c can be adjusted by researchers considering how
heavy they want to penalize unsafe behavior, and it is defined to be 5 in this paper. The value
of c decides the balance point of the joint optimization process described in Section 4.3. It is also
worth to mention that the cost is a parse cost, not a dense cost, and it is a function similar to
reward, which defined as c(st, at). Based on the nature of those nine environments, we categorized
them into three categories in terms of defining cost and reconfigure the environments into CMDPs.
Table 1 summarize the categorization, and more detailed are explained as follows.

Environments Cost Categorization

Simple adversary
Collision with agentSimple spread

Simple crypto

Simple tag
Collision with obstaclesSimple push

Simple world common

Simple reference
Stay within the non-communication zone

Simple speaker listener

Table 1: Summary of environments and the cost categorization

4.1.1 Collision with Agents

For environments that involves task of navigation (multiple agents need to navigate to multiple
goals), collision with each other is an unsafe behavior that is not preferably to observe. In fact,
simple adversary, simple spread, and simple crypto falls into this category. For example, simple
spread (cooperative navigation) involves agents navigate to different targets. Collision, therefore,
would be an unsafe behavior. A similar example in the real world is the multi-agent autonomous
platoon [6]. An integer value c is associated with every collision happened in one episode.

4.1.2 Collision with Obstacles

For environments that are cooperative-competitive (involves both good agents and adversary in one
game) that involves chasing one another, collision with each other is part of the game. Therefore
the cost is defined to be colliding with randomly generated obstacles inside the map of the game.
A similar example in real world is the predator-prey situation in wild world. The predator need to
catch the prey while also avoiding colliding with trees and other obstacles in the forest. An integer
value c is associated with every collision happened in one episode.

4.1.3 Non-communication Zones

For environments that involves communications between agents (through sending private code),
cost is defined to be staying inside of randomly generated non-communication zones. Inside the
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communication zone, the private code will be intercepted and replace to NULL. A similar example
in real world would be when agent enters an area that have no internet access created by the
attacker. An integer value c is associated with every timestep in one episode the agent stays inside
the zone.

4.2 Learn to Violate Safety

In Multi-agent CMDP environments, one agent in the team, termed unsafe agent learns an optimal
policy πadv∗ to maximize the accumulated cost associated with the safety violation through the
exploration-exploitation principle of RL. Before the unsafe behavior training, all other agents are
trained using MADDPG until optimal with a policy π∗ and remain fixed during the unsafe behavior
training. Therefore, the training process is simplfied into a single-agent RL problem. Note if
the environment is cooperative-competitive, the unsafe agent must be one of the good agent.
In this process, the agent learns all possible ways to violate the safety constraint in the CMDP
environments.

4.3 Learn to Be Cautious

The trained optimal unsafe behavior policy πadv∗ will be used as a heuristic policy in this step to
train the safe policy πsafe(at|st) using a joint optimization process with two objectives.

Objective 1: Maximizing the KL Divergence From πadv∗: KL Divergence of an arbitrary
policy with respect to πadv∗ guarantees to reduce the probability of selecting a trajectory leading
to safety violations in single agent situation [9]. When other team member’s policy is fixed, the
problem becomes an single-agent problems so the assumptions holds. The first objective is to train
πsafe(at|st) in order to maximize:

DKL(π
safe(at|st)∥πadv∗(at|st)) (16)

However, maximizing the distance between two policies only guarantees a different at is generated
from πsafe such that at is as different from unsafe action as possible, but such action is not proven
to be safe. Then we need to also to optimize Objective 2 to ensure safety.

Objective 2: Minimize the Advantage Function Aadv(st,at)

Advantage Function A(s, a) is a value that reflect how many ’advantage’ you gain through taking
action a at state t, which mathematically defined as A(s, a) = Q(s, a)−V (s). If we select action at
that minimize Aadv(s, at), the goal is to be ’disadvantaged’ from the heuristic unsafe policy πadv∗.
This minimization problem ensures minimum additional value is gained referenced upon unsafe
behavior policy, therefore safety is ensured.
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5 Experiments and Results

This section describes the implementation of our attacks and initial experiments with safety cer-
tificate, as well as discusses the obtained results.

5.1 Attack

5.1.1 Environment Setup

Figure 4: The average episode rewards in 2 particle multi-agent environments (MADDPG) and StarCraft2 (QMIX)
under our attacks as a function of attack rate.

We evaluate the robustness of the MADDPG algorithm under our attacks in both the white and
black box settings in two particle environments [1]: cooperative navigation and physical deception
with variant attacking rates. In the cooperative navigation environment, N cooperative agents must
cover L landmarks, and the agents must learn to reach separate landmarks without communicating
their observations to each other. In our experiments, we use N = L = 3. In the physical deception
environment, N cooperative agents try to fool one adversarial agent. There are L total landmarks,
with one being the ‘target’ landmark and only the cooperative agents know which landmark is the
target one. The adversary must try to infer and reach the target landmark from the cooperative
agents’ positioning, and the cooperative agents must try to deceive the adversary by spacing out.
The cooperative agents are rewarded as long a single member of their team reaches the target
landmark. We use N = L = 2.

We evaluate the robustness of QMIX using StarCraft II, a real-time strategy game where two
teams of agents can fight against each other. We use the “3m” SMAC map, which employs three
“Marine” units on each team. A team wins by shooting the enemy team enough to drain their
health. Our team consists of three cooperative agents working together to defeat the three enemy
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Table 2: The average number of occupied landmarks in the cooperative navigation, average distance
between the cooperative agents and target landmark in physical deception [1], and win rate for the
cooperative team in StarCraft II [8] for 25%, 50%, 75%, and 100% attack rates across all attack
types in white and black box settings.

MADDPG: Cooperative Navigation (occupied landmarks)

White Box Black Box

Attack Rate Random Timed Counterfactual Zero-sum Random Timed Counterfactual Zero-sum

0% 1.611 1.611 1.611 1.611 1.611 1.611 1.611 1.611
25% 1.311 1.308 1.007 1.102 1.325 1.333 1.150 1.09
50% 0.958 0.955 0.786 0.868 1.058 1.048 1.002 0.847
75% 0.695 0.711 0.601 0.722 0.860 0.815 0.811 0.730
100% 0.502 0.562 0.489 0.573 0.502 0.688 0.547 0.519

MADDPG: Physical Deception (average distance)

White Box Black Box

Attack Rate Random Timed Counterfactual Zero-sum Random Timed Counterfactual Zero-sum

0% 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163
25% 0.225 0.418 0.196 0.188 0.200 0.343 0.182 0.175
50% 0.326 0.470 0.211 0.277 0.324 0.499 0.201 0.2
75% 0.515 0.607 0.264 0.297 0.530 0.614 0.235 0.243
100% 0.540 0.688 0.427 0.423 0.654 0.680 0.412 0.356

QMIX: StarCraft II (win rate)

White Box Black Box

Attack Rate Random Timed Counterfactual Zero-sum Random Timed Counterfactual Zero-sum

0% 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955
25% 0.32 0.18 0.190 0.210 0.475 0.135 0.135 0.528
50% 0.065 0.0 0.060 0.050 0.015 0.0 0.080 0.144
75% 0.01 0.0 0.0 0.000 0.0 0.0 0.030 0.04
100% 0.0 0.0 0.0 0.000 0.0 0.0 0.0 0.0

marines, which use fixed policies. For our attacks, we control one of the cooperative marines, and
alter its actions using the aforementioned attack strategies.

We discuss the obtained results from two perspectives: the adversarial policies and c-MARL team
reward, and the qualitative performance and behavioral analysis of the agents.

5.1.2 Adversarial Policies and Team Reward

To learn an adversarial policy for the compromised agent, we used the attack strategies explained
in Section 3.3. To evaluate the performance of each policy, we directly change the actions of
the compromised agent based on the output of the adversarial policy. We ran each attack with
different attack episode lengths starting at 0% and moving to 100% by increments of 25%. We
present the team average reward for the victim agents in Fig. 4. As the attack rate increases, the
team reward decreases, indicating that each attack was successful at degrading the robustness of
c-MARL algorithms. The strategically-timed attack has the highest negative impact on the team
reward when the attack rate is higher. However, the zero-sum and counterfactual reasoning-based
attacks perform better with less attack rates in the cooperative navigation environments.

In the physical deception environment, the strategically-timed attack achieved 86.6% and 85%
reward drop for 100% attack rate in white-box and black-box settings, respectively. In the co-
operative navigation environment, the strategically-timed attack achieved a reward drop of 33.1%
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Figure 5: Screenshots from replayed episodes of the cooperative navigation environment from
MADDPG under the strategically-timed attack.

and 33.0% for white-box and black-box settings, respectively. In the StarCraft II environment,
the strategically-timed attack achieved a reward drop of 84% and 89.6% in the white-box and the
black-box settings, respectively. The strategically-timed attack is the strongest because it attacks
only at impactful timesteps as opposed to the randomly-timed attack which attacks at random
timesteps during the episode.

The counterfactual reasoning-based attack is able to achieve similar levels of performance with
respect to the strategically-timed attack in StarCraft. In Cooperative Navigation, both the coun-
terfactual and zero-sum achieve similar performance as the strategically-timed attack, especially
with low attack rates. We believe since those environments are purely cooperative, the adversarial
policies trained to directly sabotage other agents’ policies can better diminish the robustness of the
algorithms in cooperative settings. However, in the physical deception environment that naturally
involves an enemy, the counterfactual and zero-sum attacks have the least impact on the team
reward.

Although the results in Fig. 4 and Table 2 show that the counterfactual reasoning-based attack
succeeds, we observe an effect similar in nature to the canonical imitation learning problem. As
we start attacking the system using the compromised agent’s counterfactual actions, the impact of
the attack was not as strong as the other attacks. We hypothesize that this is due to the inability
of the behavioral cloning model to accurately capture the other agents’ states that were not part
of their optimal policies during reconnaissance. In general, the canonical problem of imitation
learning accumulates the learning errors, resulting in the learner encountering unknown states [26].
Moreover, this attack builds its adversarial policy based on predicting each agent’s action for a
sequence of timesteps then finds the counterfactual actions with maximum KL divergence using
those predictions. Hence, the prediction errors accumulate over the timesteps and hinder the attack.

5.1.3 Qualitative Performance and Behavioral Analysis

We evaluate the qualitative performance of c-MARL algorithms under our attacks using environment-
specific metrics. In the cooperative navigation environment, we measure the average number of the
occupied landmarks by the cooperative agents. In the physical deception environment, we measure
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Figure 6: Screenshots from replayed episodes of the cooperative navigation environment from
MADDPG under the counterfactual reasoning-based attack.

Figure 7: Screenshots from replayed episodes of the physical deception environment from MAD-
DPG under the strategically-timed attack. To the left, we see the beginning of the episode where
the cooperative agents are splitting over the target and non-target landmarks. To the right, the
compromised agent is moving away from the non-target landmark, leaking the information to the
adversary.

the average distance between the cooperative agents and the target landmark. In StartCraft II,
we use the team win rate to evaluate the attack impact. Table 2 shows the performance of each
attack. In cooperative navigation, the number of occupied landmarks per timestep decreases as
the compromised agent deviates more from its optimal policy. Similarly, in physical deception, the
distance from the closest cooperative agent to the target landmark increases as we attack at more
timesteps.

In StarCraft II, under the optimal QMIX policy, the c-MARL team of agents wins the battle around
95% of the time. As shown in the last part of Table 2, attacking during just 25% of timesteps can
reduce the win rate by at least 18% for the strategically-timed attack in a white-box setting, and
13% in the black-box setting. In all attack strategies, a 100% attack rate decreases the win rate
to 0%, and in most attacks, a 75% attack rate also does that. Overall, under the compromised
agent attacks, the win rate decreases as the attack rate increases, and even a small attack rate has
significant impact on the QMIX robustness.

We show here the qualitative analysis of the cooperative navigation environment under the strategically-
timed and counterfactual reasoning-based attacks, chosen to represent the attacks in each category.
During the strategically-timed attack, the compromised agent immediately moves away from the
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Figure 8: Screenshots from replayed episodes of the physical deception environment from MADDPG
under the counterfactual reasoning-based attack. To the left, we see the beginning of the episode.
To the right, the compromised agent is moving away from the non-target landmark at a perfect
timing to leak the information to the adversary which got the clue and moved towards the target.

landmarks to prevent its teammates from covering all landmarks. In this environment, there is
not much room for the agents to recover from the compromised agent’s adversarial actions. The
left figure in Fig. 5 shows the beginning of the episode where the agents attempt to cover the 3
landmarks (black circles). Then, in the right figure, the compromised agent (within the red circle)
is moving away from its supposedly assigned landmark.

In the counterfactual reasoning-based attack, the compromised agent displays interesting behav-
iors. The first behavior is shown in Fig. 6. The compromised agent (pointed to with a red arrow)
is moving away from the landmark just before its teammate(s) get to a landmark, which makes
the affected agent (within a green circle) confused about which landmark to cover (stands in be-
tween the 2 empty landmarks for the remaining of the episode). This behavior suggests that the
compromised agent succeeds by manipulating its teammate’s observations through its actions. We
notice another behavior under this attack strategy where the compromised agent moves to the same
landmark that has been already covered by one of its teammate causing the team reward to decrease.

In the physical deception environment, during the strategically-timed attack, we notice that when
the compromised agent moves away from the non-target landmark (Fig. 7), the other cooperative
agent does not alter its behavior to move away from the target. This is a robustness issue in
the MADDPG algorithm. Ideally, the agents should be robust enough to not have to rely on a
teammate who is not doing its job. Similarly, when the compromised agent leaves the non-target
landmark uncovered and moves towards the target landmark, the adversary does not always take
advantage of this clue (Fig. 8). The optimal behavior of the adversary would be to move towards
the only landmark which is being covered by a cooperative agent, instead it stands still. This
behavior once again shows a lack of robustness in the agents under our attack.
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Figure 9: Screenshots from replayed episodes of StarCraft II. The compromised agent is con-
trolled by an adversarial policy trained with the strategically-timed attack (top) and counterfactual
reasoning-based attack (bottom).

In the StarCraftII, during all attacks except the counterfactual reasoning-based attack, we notice
that the compromised agent moves away from its team until its teammates get defeated. Then, it
moves towards the enemies to get killed. In the strategically-timed attack, the compromised agent
runs away only when its team is getting closer to the enemy (top of Fig. 9). In the counterfactual
reasoning-based attack, we notice that sometimes the compromised agent is luring one of its team-
mates to start attacking the enemy team then it itself runs away (bottom of Fig. 9) causing its
team to get defeated.

Figure 10: Cost and reward for good agents in simple spread during training
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Figure 11: Cost and reward for good agents in simple adversary during training

5.2 Defense

5.2.1 CMDP Convergence Training

After modifying the Multi-Agent Particle environments [1] to become CMDP, convergence property
has to be proved to ensure changes in environments does not violate the training assumptions by
MADDPG. We followed the centralized training decentralized execution framework and procedures
from [1] to train agents until convergence in eight different CMDP particle environments. We show
the trend of good agent reward and good agent cost with respect to timestep.

Fig. 10 and Fig. 11 are the result from simple spread (cooperative navigation) and simple ad-
versary (physical deception). We observed that the reward for the agents are trained to converge
eventually, and the numbers matches the reported optimal reward from [1]. Therefore the modifi-
cations to Multi-Agent Particle environments into CMDP do not affect the convergence property of
MADDPG training, and the agents are able to reach the same level of performance as before. Note
that the value of cost doesn’t become part of the reward function of the environments. In fact,
the environment dynamic and reward function has remained unchanged. However, we observe a
significant value of cost associated with the agents during training and even when they converges to
optimal policy. This means the agents, even if are capable of acting optimally to achieve the goal,
is not safe, because there are significant amount of cost reported during training. For example,
in cooperative navigation, agents are able to cover landmarks as quickly as possible, but we still
observe a significant amount of collisions, which prompt us to also consider if there are needs to
sacrifice some of the performance to ensure safety.

At the same time , we also hope that as the first set of CMDP environments in Multi-agent domains,
CMDP Multi-Agent Particle environments can be used as a baseline for future research on safety
issue in MARL system.

Table that summarizes hyperparameters used during training and training figures for the rest of
the environments can be found in the Appendix.
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5.2.2 Future Work on Defense

Due to time limitations, the rest of the work will be taken by Wake Forest University, Computer
Science master student Asifur Rahman. We have formulate the theoretical ideas and framework
for safety certificate in Section 4. Eventually after implementing the idea of safety certificates,
we hypothesized the optimal reward for each environment will be lower than the standard value
(before safety certificates), but the cost will significantly dropped to close to zero. The central idea
is to sacrifice some of the performance to ensure safety, which is a more realistic situation in the
real life.

6 Conclusion

In this work, we investigate the maleficence of c-MARL by targeting and weaponizing one agent,
termed compromised, to follow an adversarial policy that pushes the activation of the cooper-
ating agents’ policy networks off distribution. We propose four attack strategies to control the
compromised agent: 1) randomly-timed attack, 2) strategically timed attack, 3) counterfactual
reasoning-based attack, and 4) zero-sum attack. Our attacks reduce the overall team reward in all
environments by at least 33% and at most 89.6%. We also proposed the idea of safety certificates to
train the agent in a two-step process so that agents are capable of being ’catutious’ to their team-
mate’s behavior. We construct CMDP Multi-agent Particles environment as a baseline for future
research. This will increase the robustness of c-MARL systems functioning in uncertain environ-
ments. Moreover, our attacks can be utilized to evaluate the robustness of c-MARL algorithms.
The code is available in my Github: https://github.com/frank47ltt/MARL Robustness.
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7 Appendix

7.1 Statement of Published Work

This thesis incorporated two accepted publications from Tongtong Liu pertinent to the subject of
the thesis, and Tongtong Liu had the major role in preparation of those manuscripts. Two pertinent
papers are referenced as followed.

1. Liu, T.; McCalmon, J.; Lischke, C.; Rahman, A.; Halabi, T.; and Alqahtani, S. “Weaponizing
Actions in Multi-Agent Reinforcement Learning: Theoretical and Empirical Study on Security
and Robustness”. Accpeted by The 24th International Conference on Principles and Practice
of Multi-Agent Systems (PRIMA 2022).

2. Rahman, A.; Liu, T.; and Alqahtani, S. “Adversarial Behavior Exclusion for Safe Rein-
forcement Learning”. In Proceedings of the 32nd International Joint Conference on Artificial
Intelligence (IJCAI 2023).

7.2 Additional Graph for CMDP Training

Training in CMDP Multi-Agent Particles environments fixed all the policies except for one good
agent and using the following hyperparameters:

• maximum episode length: 25

• number of episode of training: 200000

• learning rate: 0.01

• gamma: 0.95

• batch size: 1024

Figure 12: Cost and reward for good agents in simple crypto during training

26



Figure 13: Cost and reward for good agents in simple reference during training

Figure 14: Cost and reward for good agents in simple speaker listener during training

Figure 15: Cost and reward for good agents in simple push during training
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Figure 16: Cost and reward for good agents in simple tag during training

Figure 17: Cost and reward for good agents in simple world comm during training
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