
LSTM-Based Anomalous Behavior Detection in
Multi-Agent Reinforcement Learning

Cameron Lischke
Computer Science Department

John Hopkins university
Baltimore, MD, USA

clischk1@jhu.edu

Md Asifur Rahman
Computer Science Department

Wake Forest University
Winston-Salem, NC, USA

rahmm21@wfu.edu

Tongtong Liu
Computer Science Department

Wake Forest University
Winston-Salem, NC, USA

liut18@wfu.edu

Talal Halabi
Applied Computer Science

University of Winnipeg
Winnipeg, MB, Canada
t.halabi@uwinnipeg.ca

Joe McCalmon
Computer Science Department

Wake Forest University
Winston-Salem, NC, USA

mccajl18@wfu.edu

Sarra Alqahtani
Computer Science Department

Wake Forest University
Winston-Salem, NC, USA

alqahtas@wfu.edu

Abstract—Multi-Agent Reinforcement Learning (MARL) ex-
tends individual reinforcement learning to enable a team of
agents to collaboratively determine the global optimal policy
that maximizes the sum of their local accumulated rewards.
It has been recently deployed in multiple application domains
such as edge computing, wireless networks, and Cyber-Physical
Systems. Nonetheless, the security of MARL and its potential
exposure to cyberattacks have not yet been fully investigated.
This paper examines one of the most serious vulnerabilities
in MARL algorithms: the compromised agent. This newly-
engineered adversarial vulnerability is exploited when a malicious
user compromises an agent to directly control its actions, and
subsequently pushes its cooperative agents to act off-policy. We
present a novel stacked-LSTM ensemble approach to detect
such an attack. The results show that our anomalous behavior
detection system significantly outperforms five baselines from the
literature.Index Terms—Multi-Agent Reinforcement Learning, adversar-
ial attacks, LSTM, anomaly detection.

I. INTRODUCTION

The last decade has witnessed significant advances in the
usage and implementation of Reinforcement Learning (RL) in
a variety of application areas. Furthermore, agents learning
to play card games like Go and Poker, advancements in
autonomous driving systems, and a multitude of robotics
innovations all center around RL algorithms that optimize the
training of more than one agent in parallel. Naturally, these
algorithms emerged as a subfield of RL known as Multi-Agent
Reinforcement Learning (MARL).

With MARL’s major implications in artificial intelligence
applications ranging from computer-driven games to au-
tonomous vehicle platoons [1], the reliability and security of
MARL algorithms is of utmost importance. Because of the
common goal of cooperation or competition (or both) between
agents within many MARL systems [2], agents react based on
the actions of other agents within the same environment. For
example, connected autonomous vehicles must interact with

other vehicles, pedestrians, and the static infrastructure while
considering the actions and reactions of other vehicles before
acting on their own [3]. For this reason, it only takes one
corrupted agent to cause major security issues. Adversaries
that intentionally aim to defect targeted networks can confuse
agents and lead them to make mistakes that can result in
poor performance and even harm to humans that rely on these
systems [4], [5]. Recently, this vulnerability of compromised
agents has been discovered in MARL policies in [5].

Often, the noise added by corrupted agents to fool MARL
systems are invisible to humans [1], [4], which underlines
the critical need for reliable machine learning algorithms to
detect and mitigate such attacks. In this paper, we develop a
novel ensemble of binary long-short term memory (LSTM)
network and predictive LSTM to detect the compromised
agent behavior in MARL. We evaluate the performance of
our approach against popular classification approaches, namely
four dense layers neural networks, support vector machines, k-
nearest neighbors, and binary LSTM [6]. Our ensemble model
achieves the highest detection rate among all baselines. We
uploaded our code and datasets as supplementary materials to
ensure the reproducibility of our research findings1.

Our contributions are listed as follows :
1) We develop a novel ensemble model using binary LSTM

and predictive LSTM to detect the behavior of compro-
mised agents in MARL systems.

2) We design anomalous behavior detection models using
different machine learning techniques as baselines.

3) We thoroughly analyze the detection results of the
proposed model and the baselines using the attack from
[5]. Our ensemble model detects up to 100% with high
attack rates and outperforms the studied baselines.

The remainder of the paper is structured as follows. Section
II introduces some preliminary concepts and discusses back-

1https://github.com/frank47ltt/Multi-Agent-Security/tree/main/MARL Detection978-1-6654-9952-1/22/$31.00 ©2022 IEEE

16

2022 IEEE International Conference on Cyber Security and Resilience (CSR)
20

22
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 C
yb

er
 S

ec
ur

ity
 a

nd
 R

es
ili

en
ce

 (C
SR

) |
 9

78
-1

-6
65

4-
99

52
-1

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

C
SR

54
59

9.
20

22
.9

85
03

43

Authorized licensed use limited to: Wake Forest Univ. Downloaded on August 17,2022 at 15:08:02 UTC from IEEE Xplore.  Restrictions apply. 



ground information and related work. Section III presents our
proposed detection approach. Section IV analyzes the obtained
results. Finally, Section V concludes the paper.

II. PRELIMINARIES AND RELATED WORK

This section provides important information about the se-
curity of MARL and existing anomaly detection models.

A. Multi-Agent Reinforcement Learning

MARL extends single-agent RL and employs N > 1 agents
in a single environment. MARL environments are not inher-
ently Markov, since the transition probabilities Pr{Rt+1 =
r, St+1 = s′|St, A

1
t , . . . , A

N
t } depend not only on one action

but on the actions chosen by each agent. To each agent, the
function by which the environment selects the state at t + 1
appears non-stationary [7]. In addition, each agent receives
its own observations, oit, where St = {o1t , o2t , . . . , oNt }. Thus,
parts of the environment’s state can be hidden from each agent.

MADDPG is the current state-of-the-art algorithm for
MARL. It uses two deep neural networks, one to learn a value
representation for the expected return (the critic), and one to
decide the correct action for the agent (the actor). MADDPG
allows the critic network to learn a value function based on the
observations of each agent combined, but the actor network
must learn a policy using only the corresponding agent’s
own observations. The result is an agent which has a unique
decision-learning policy from the others in the environment,
allowing success for multiple agents with different goals.

The other MARL algorithm that we tested in this paper is
QMIX [8], which is a multi-agent Deep Q-Learning (DQN)
algorithm based on Q-Learning with state-of-the-art perfor-
mance on the StarCraft II Multi-Agent Challenge. QMIX finds
the optimal joint action value function using a monotonic
mixing function of per-agent utilities. In QMIX, each agent
uses a recurrent-DQN network to estimate the action values
based on their partial observation. DQN uses experience replay
and a target network to improve the stability and convergence
of the RL agent’s training. To maximize the total team reward,
QMIX estimates the joint action values through a mixing
network that takes in each agent’s selected action Q-value (i.e.,
action with max Q-value) and the current state to estimate the
total team reward. With an accurate estimation of the total
reward, each individual agent’s Q-network can be fine-tuned
to maximize the total team reward during execution.

B. Adversarial Attacks in MARL

Research surrounding MARL systems has been gaining a lot
of popularity [9]. The heightened interest in RL systems has
brought significant attention to the adversarial vulnerabilities
evident in many cooperative and competitive settings [3].
Huang et al. [4] were the first to present the proof of concept
that an adversary can interfere with the operation of an RL
agent [4]. In an attempt to coordinate its actions with other
agents in the system, an uncompromised agent can be directly
influenced by its malicious adversarial agents [2].

To detect and mitigate such attacks that are normally

invisible to the human eye [1], [4], machine learning tech-
niques are especially valuable. Much of the research involves
investigations of how to prevent adversarial examples from
fooling MARL policies with methods like adversarial training
[1], [10], [11], data augmentation and randomization [12], and
detector subnetworks [1], [13]. In this work, we test several
popular machine learning approaches and their ability to detect
adversarial attacks when they have already occurred.

C. Deep Learning for Anomaly Detection

Deep learning and the use of neural networks to conceptual-
ize tasks have become hot topics. However, due to limitations
of a feed-forward neural network’s ability to remember in-
formation from previous frames of data, a Long-Short Term
Memory Neural Network (LSTM) was developed using real-
time recurrent learning [14]. LSTMs mitigate the vanishing-
gradient problem by implementing various recurrent cycles
from subsequent neurons to preceding ones, creating hidden
layers that act like memory. Using input, activation, forget, and
output gates, LSTM allows for long-term memory storage and
is especially conducive to time-series data [6], [14].

LSTMs demonstrate a viable technique to predict normal
time-series behavior that consequently classifies anomalous
behavior without real knowledge of the data domain [14], [15].
Compared to other deep learning techniques, LSTM-based
prediction models may yield better results and performance
[6]. Much work has been done to prove that LSTMs are
extremely effective in classifying anomalous behavior [13]
in various domains ranging from medicine [14] to computer
network traffic [15]. LSTM networks can go even further,
differentiating between categories of anomalous behavior from
normal behavior [14]. Using prediction error distributions as
a baseline [6], LSTM networks are perfectly suited to analyze
sequential data with temporal dynamics [14]. Stacked LSTM
neural networks have shown exceptional performance in de-
tecting anomalies [6], [14], [16], demonstrating the promise
of deep learning techniques in security applications.

Malhotra et al. [6] claim that LSTM-based prediction mod-
els, where the output is the expected action or value, may
produce better results than other detection subnetworks. Their
detection algorithm learns a threshold that maximizes the F1-
score between anomalous and normal datapoints. Then, after
training on normal datasets, an LSTM prediction model calcu-
lates the error vector of predicted and true values. Fitting this
to a multi-variate Gaussian distribution gives an output of P t;
if P t < threshold, the data will be classified as anomalous.
Naseer et al. [16] propose a simpler deep learning detector
subnetwork using a binary LSTM model, which classifies
datapoints into 0 as normal and 1 as anomalous. LSTM-based
models have shown to outperform other machine learning
classifiers. Overall, the temporal element of MARL systems
can clearly benefit from LSTM-based detector subnetworks.

D. Classical Machine Learning for Anomaly Detection

In this paper, we develop anomaly detection models to
detect the compromised agent in MARL using SVM, K-

17

Authorized licensed use limited to: Wake Forest Univ. Downloaded on August 17,2022 at 15:08:02 UTC from IEEE Xplore.  Restrictions apply. 



nearest, Random Forests, binary LSTM, and four layer dense
neural networks. Then, we compare their performance against
our novel detection model of ensemble binary LSTM and pre-
dictive LSTM. The baseline models are described as follows.

Support Vector Machines (SVMs) [17] are one of the
most common machine classifiers for binary data. The inner
workings of these machines relies on input vectors, a distance
metric hyperparameter, and labeled points. Assuming that the
data can be linearly separable, a linear decision surface is
constructed and used to classify data by finding the best
(largest) hyperplane that separates all data points of one class
from those of another class, without interior data points. Once
that decision boundary is learned, datapoints are plotted and
then classified based on which half of the decision boundary
it falls into. Basic SVMs can reliably classify anomalous data
due to its binary nature, assuming that the training data are
independently and identically distributed [18]–[20].

k-nearest neighbors is another supervised learning method.
Using this algorithm, predictions are made for a new in-
stance by searching through the entire training set for the k
most-similar instances (neighbors) and summarizing the most-
common output label for those k neighbors. In short, the class
with the highest frequency from the k-nearest neighbors will
be taken as the new datapoint’s predicted class. Again, a dis-
tance metric hyperparameter, as well as an integer for k must
be specified prior to testing. As in SVM, a popular application
for k-nearest neighbors is network intrusion detection. Because
of the distance metric used to determine the nearest neighbors,
high-dimensional vectors that are similar may not actually be
regarded as “close.” In addition, as the number of training
datapoints increases exponentially, the probability of error is
bounded [21]. To combat this, k-nearest neighbors is often
combined with more sophisticated algorithms [22].

In other application settings, random forests have proven
useful. The basic unit of a random forest is the decision tree,
an overall map of the possible outcomes of a series of related
choices, usually beginning with a single node and repeatedly
branching into possible outcomes until a classification can be
made by the tree. Randomly creating a forest of trees presents
an ensemble that forms a random forest providing greater
accuracy than stand-alone decision trees by averaging the
predictions of each component tree [14], [23]–[26]. Generally,
with more trees and stronger correlation between them comes
greater robustness and better classification [14], [23].

III. PROPOSED ANOMALY DETECTION APPROACH

This section describes the threat model in MARL based
on the compromised agent vulnerability and presents our
anomalous behavior detection model.

A. Threat Model

This paper models the cooperative MARL (MARL) system
using stochastic games [27]. For an n-agent stochastic game,
we define a tuple G =

(
S,A1, ..., An, r1, ..., rn, T, γ

)
, where

S denotes the state space, Ai and ri are the action space and
the reward function for agent i ∈ 1, ..., n, respectively. γ is

the discount factor for future rewards, and T is a joint state
transition function T : S × A1 × A2.. × An → △(S) where
△(S) is a probability distribution on S. Agent i chooses its
action ai ∈ Ai according to its policy πi

θi(ai|s) parameterized
by θi conditioning on some given state s ∈ S. The collection
of all agents’ policies πθ is called the joint policy where θ
represents the joint parameter. For convenience, we interpret
the joint policy from the perspective of agent i as:

πθ = (πi
θi(ai|s)π−i

θ−i(a
−i|s)) (1)

where a−i = (aj)j ̸=i, θ
−i = (θj)j ̸=i, and π−i

θ−i(a
−i|s) is a

compact representation of the joint policy of all complemen-
tary agents of i. Since the agents’ policies are held fixed, the
Markov game G reduces to a single-player MDP, denoted by
Gm = (S,Am, Tm, Rm), that the adversary must solve to
generate a new policy by which the compromised agent m
will achieve the adversary’s goal of attacking the other agents
−m and degrading the robustness of MARL.

The compromised agent problem in MARL is defined by:

max

t=T∑
t=0

KL (p(a−m
t |amt , st)||p(a−m

t |a∗mt , st)) (2)

where a∗m represents the adversarial actions generated by
the adversarial policies of the compromised agent m. This
equation maximizes the KL-divergence between the condi-
tional policy of −m on the action am at time t and the same
conditional policy if agent m deviates from its policy and takes
an adversarial action a∗m. The adversary can then intervene
on amt by replacing it with action a∗mt , which will be used
to compute the next action of agents −m, p(a−m

t+1|a∗mt , smt ),
pushing the activations of their policy networks off distribu-
tion. Practically, the problem in Eq. (2) can be solved by
finding the compromised agent’s adversarial actions a∗m that
maximize the KL-divergence using the attack proposed in [5].

B. Anomalous Behavior Detection in MARL using an Ensem-
ble LSTM Model

To combat the compromised agent vulnerability in MARL
algorithms, we develop an ensemble model of binary LSTM
and predictive LSTM shown in Fig. 1. The proposed model
predicts the sequence of actions expected to be taken by the
compromised agent m at the next h time steps t+h based on
the actions taken by the benign agents −m, the actions taken
by m at the last t−h time steps, and the states st, st−1, ..st−h.
Let’s assume that the prediction function for the ensemble
LSTM is −→y = ω(x) such that y is the prediction output and
x represents the input to the network. −→y is a vector of the
predicted next h actions for agents m, [amt , .., amt+h]. The input
x includes three vectors of historical information: a vector for
the previous h actions taken by agents m, [amt−h, ..., a

m
t−1],

a vector for the previous h actions taken by agents −m
[a−m

t−h, ..., a
−m
t−1], and a vector of previous states [st−h, ..., st−1].

Then, the LSTM prediction function becomes:
−→a m

t,t+h = ωm
(
[amt−h, .., a

m
t ], [a−m

t−h, .., a
−m
t ], [st−h, .., st]

)
(3)

18

Authorized licensed use limited to: Wake Forest Univ. Downloaded on August 17,2022 at 15:08:02 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. The ensemble LSTM-based model for anomalous behavior detection in MARL.

Using the results from Eq. (3), we compute the error vector
−→e based on Mahalanobis’ distance [28] between the predicted
and observed vectors of actions as follows:

−→e t,t+h = −→a m
t,t+hobs

−−→a m
t,t+hpred

(4)

Using a predefined threshold σ, we compute how likely the
error vector −→e represents an anomaly if it is larger than σ.

Algorithm 1 presents the LSTM model for MARL anomaly
detection. In Fig. 1, we first run our testing data through
the Binary LSTM; if a datapoint is classified as positive
for anomaly, then it would be investigated by a human to
ensure accuracy. Any datapoint classified as negative would
then be run through the predictive LSTM ensemble separated

Algorithm 1 Ensemble Model for Anomalous Behavior De-
tection in MARL

1: Input
2: [s0, s1, .., sn]

t
t−h: Agents’ states for the last h timesteps

3: [a0, a1, .., an]
t
t−h: Agents’ actions for the last h timesteps

4: D: The training dataset from MARL systems
5: Output
6: −→e t,t+h: The classification of each agent’s action as normal

or anomaly
7: procedure ENSEMBLE LSTM MODEL
8: Learn α by maximizing F1-score in D
9: −→a m

t,t+h = ωm
(
[amt−h, ., a

m
t ], [a−m

t−h, ., a
−m
t ], [st−h, ., st]

)
10: −→e t,t+h = −→a m

t,t+hobs
−−→a m

t,t+hpred

11: if −→e t,t+h > α then
12: return amt is anomalous
13: else
14: return amt is normal

by agents. These points are tested by n models to generate
the predictions based on the probability that agent i performs
action 1, 2, . . . , k for k possible actions.

In the tested particle environments, we used a threshold
of 0.10 for the minimum probability for action j such that i
performing j is still a relatively benign action (as suggested
by the model). The threshold 0.10 was chosen because there
are only 5 possible actions in our test environments. For
the model to decide that a certain action is normal, it only
needs to predict it with at least 0.20 confidence. Therefore,
0.10 has merit as a threshold. Similarly, Starcraft II has 9
possible actions, so for that environment, a threshold of 0.05
has merit. For a datapoint to be considered normal, all of the
true actions must be covered by all of the predicted actions
with a confidence greater than the threshold. Formally, this
is defined as follows: ∀ â ∈ true{a0, a1, . . . , an}, ∃ a ∈
{predicted{a0, a1, . . . , an} ≥ α} such that â == a.

IV. EXPERIMENTS AND RESULTS

We developed different anomalous behavior detection mod-
els as the baseline for our experimental evaluation, namely a
four-layer dense neural network, a three-layer binary LSTM
[16], Random Forest, SVM classifier, and a K-nearest Neigh-
bors classifier. This section explains the dataset used in our
empirical study and analyzes the obtained results.

A. Dataset Generation

To create the dataset for the MARL system, we first ran
the two MARL algorithms MADDPG and QMIX without
anomalies. In MADDPG, we collected data from 2 particle
environments: cooperative navigation and physical deception.
In cooperative navigation, N cooperative agents must cover

19

Authorized licensed use limited to: Wake Forest Univ. Downloaded on August 17,2022 at 15:08:02 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. The percentage of undetected anomalies by each model in the white-box compromised agent attack scenario.

L landmarks and the agents must learn to reach separate
landmarks without communicating their observations to each
other. In our experiments, we use N = L = 3. In physical
deception, N cooperative agents try to fool one adversarial
agent. There are L total landmarks with one being the ‘target’
landmark and only the cooperative agents know which of
the landmarks is the target. The adversary must try to infer
and reach the target landmark from the cooperative agents’
positioning, and the cooperative agents must try to deceive the
adversary by spacing out. The cooperative agents are rewarded
as long as a single member of their team reaches the target
landmark. Here, we use N = L = 2.

We also collected data from the QMIX algorithm using the
StarCraft II environment, which is a real-time strategy game
where two teams of agents can fight against each other. We use
the “3m” SMAC map, which employs three “Marine” units on
each team. In this scenario, a team wins by shooting the enemy
team enough to where they run out of health. Our team consists
of three RL agents working together in a MARL system to
defeat the three enemy marines, which use fixed policies. The
implemented attack in [5] controls one of the marines and
alters its decision-making based on the adversairal policy.

After collecting the normal dataset, we implemented the
compromised agent attack [5], during which we control the
compromised agent using an adversarial policy to change its
optimal actions in white and black-box settings. All of the
baseline classifiers were trained using an evenly-distributed
training set of approximately 50% anomalous and 50% nor-
mal datapoints. The baseline classifiers predicted abnormal-
ity based on just one single input vector of the current
timestep’s global observations and global actions. That is,
they received the current state {s0, s1, ...sn} and actions
{a0, a1, ...an} of all agents. The binary LSTM received the
same information for the three previous timesteps, as well as{
{s0, s1, ...sn}, {a0, a1, ...an}

}t

t−3
.

B. Results and Discussion

Fig. 2 compares the proposed ensemble model against the
baseline detection models using the compromised agent attack.
The ensemble model achieved successful detection results in
all environments based on its recall and precision metrics.
Recall is the number of correctly identified anomalies in

Fig. 3. Average recall across all attack rates for each of the baseline models.

proportion to the number of true anomalies in the datasets.
Precision is the proportion of correctly identified anomalies
in relation to the number of predicted anomalies. Hence,
lower precision corresponds to higher false positive rates.
The sensitive nature of the attack makes recall paramount
in measuring performance. The ensemble model consistently
showed the highest recall (percentage of anomalies detected),
with some attacks only going undetected 0.1% of the time.

Fig. 3 emphasizes the performance of the ensemble model,
particularly in the Starcraft II environment, where the average
recall across all attack rates improved by approximately 7%.
This large improvement in recall compared to the other base-
line models in the Starcraft II environment is likely due to the
high-complexity of the problem. Because of the environment’s
high-dimensionality, basic machine learning algorithms strug-
gle to distinguish between normal and anomalous datapoints.

Since the proposed ensemble model yields the best perfor-
mance, we highlight its detection details in TABLE I, which
shows that our model consistently detects close to 100% of the
attacks. The model achieves higher precision when the attack
rate increases suggesting that at least 90% of the attacks can
easily be traced and detected at an attack rate as low as 25%
of the episode time. Nonetheless, the model precision leaves
some room for improvement; we believe that this is expected

20

Authorized licensed use limited to: Wake Forest Univ. Downloaded on August 17,2022 at 15:08:02 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
THE DETECTION RESULTS OF THE ATTACKS USING THE ENSEMBLE LSTM
MODEL IN THE THREE ENVIRONMENTS ACROSS DIFFERENT ATTACK RATES

IN BOTH WHITE AND BLACK BOX SETTINGS.

Cooperative Navigation
White Box Black Box

Attack Rate Precision Recall Precision Recall
25% 37% 83% 37% 91%
50% 88% 92.5% 64% 95%
75% 88% 94% 81% 95%
100% 91% 96% 100% 97%

Physical Deception
White Box Black Box

Attack Rate Precision Recall Precision Recall
25% 28% 85% 32% 95%
50% 92% 92% 60% 97%
75% 87% 93% 81% 98%
100% 84% 92% 100% 96%

Starcraft II
White Box Black Box

Attack Rate Precision Recall Precision Recall
25% 39% 91% 71% 90%
50% 96% 99% 61% 99%
75% 92% 99% 82% 85%
100% 90% 98.5% 77% 90%

from a model trained on evenly distributed data but tested
on undistributed data. With higher attacking rates, the model
gradually increases its precision. Like all intrusion detection
systems, the emphasis should be on reducing the number of
undetected attacks. Based on this reasoning, the outstanding
performance of the ensemble in terms of recall is crucial.

V. CONCLUSION

This paper proposes an anomalous behavior detection ap-
proach for compromised agents in MARL systems. Specifi-
cally, we develop an ensemble of binary LSTM and predic-
tive LSTM to detect the compromised agent in MADDPG
algorithm using 2 particle environments and QMIX algorithm
using StarCraft II in both white-box and black-box settings.
We tested our ensemble model using a dataset created by
implementing the compromised agent attack. Our model con-
sistently showed the highest recall compared to state-of-the-
art baseline models, with some attacks only going undetected
0.1% of the time. In the future, we will develop more complex
and stealthy attacks against MARL that will allow us to further
improve the robustness of our anomaly detection model.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation (NSF) under grant no. 2105007.

REFERENCES

[1] T. Chen, J. Liu, Y. Xiang, W. Niu, E. Tong, and Z. Han, “Adversarial
attack and defense in reinforcement learning-from ai security view,”
Cybersecurity, vol. 2, 12 2019.

[2] S. L. Barton, N. R. Waytowich, and D. E. Asher, “Coordination-driven
learning in multi-agent problem spaces,” CoRR, vol. abs/1809.04918,
2018.

[3] S. W. Loke, “Cooperative automated vehicles: A review of opportunities
and challenges in socially intelligent vehicles beyond networking,” IEEE
Transactions on Intelligent Vehicles, vol. 4, no. 4, pp. 509–518, 2019.

[4] S. H. Huang, N. Papernot, I. J. Goodfellow, Y. Duan, and
P. Abbeel, “Adversarial attacks on neural network policies,” CoRR,
vol. abs/1702.02284, 2017.

[5] J. Lin, K. Dzeparoska, S. Q. Zhang, A. Leon-Garcia, and N. Papernot,
“On the robustness of cooperative multi-agent reinforcement learning,”
in 2020 IEEE Security and Privacy Workshops (SPW), pp. 62–68, IEEE,
2020.

[6] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term
memory networks for anomaly detection in time series,” European
Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning, 2015.

[7] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” Advances in neural information processing systems, vol. 30,
2017.

[8] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and
S. Whiteson, “Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” in International Conference on
Machine Learning, pp. 4295–4304, PMLR, 2018.

[9] G. Arslan and S. Yüksel, “Decentralized q-learning for stochastic teams
and games,” IEEE Transactions on Automatic Control, vol. 62, no. 4,
pp. 1545–1558, 2016.

[10] A. Gleave, M. Dennis, C. Wild, N. Kant, S. Levine, and S. Russell,
“Adversarial policies: Attacking deep reinforcement learning,” arXiv
preprint arXiv:1905.10615, 2019.

[11] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[12] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille, “Mitigating adversarial
effects through randomization,” arXiv preprint arXiv:1711.01991, 2017.

[13] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting
adversarial perturbations,” arXiv preprint arXiv:1702.04267, 2017.

[14] A. Verner, LSTM networks for detection and classification of anomalies
in raw sensor data. PhD thesis, Nova Southeastern University, 2019.

[15] R. C. Staudemeyer and C. W. Omlin, “Evaluating performance of long
short-term memory recurrent neural networks on intrusion detection
data,” in Proceedings of the South African institute for computer
scientists and information technologists conference, pp. 218–224, 2013.

[16] S. Naseer, Y. Saleem, S. Khalid, M. K. Bashir, J. Han, M. M. Iqbal,
and K. Han, “Enhanced network anomaly detection based on deep neural
networks,” IEEE Access, vol. 6, pp. 48231–48246, 2018.

[17] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[18] W. Hu, Y. Liao, and V. R. Vemuri, “Robust anomaly detection using
support vector machines,” in Proceedings of the international conference
on machine learning, pp. 282–289, Citeseer, 2003.

[19] A. George, “Anomaly detection based on machine learning dimension-
ality reduction using pca and classification using svm,” International
Journal of Computer Applications, vol. 47, pp. 5–8, 06 2012.

[20] O. Salem, A. Guerassimov, A. Mehaoua, A. Marcus, and B. Furht,
“Anomaly detection in medical wireless sensor networks using svm
and linear regression models,” International Journal of E-Health and
Medical Communications (IJEHMC), vol. 5, no. 1, pp. 20–45, 2014.

[21] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[22] Y. Liao and V. R. Vemuri, “Use of k-nearest neighbor classifier for
intrusion detection,” Computers & security, vol. 21, no. 5, pp. 439–448,
2002.

[23] M. Hasan, M. M. Islam, M. I. I. Zarif, and M. Hashem, “Attack and
anomaly detection in iot sensors in iot sites using machine learning
approaches,” Internet of Things, vol. 7, p. 100059, 2019.

[24] S. Xuan, G. Liu, Z. Li, L. Zheng, S. Wang, and C. Jiang, “Random
forest for credit card fraud detection,” in 2018 IEEE 15th International
Conference on Networking, Sensing and Control (ICNSC), pp. 1–6,
2018.

[25] R. Primartha and B. A. Tama, “Anomaly detection using random forest:
A performance revisited,” in 2017 International Conference on Data
and Software Engineering (ICoDSE), pp. 1–6, 2017.

[26] J. Zhang and M. Zulkernine, “A hybrid network intrusion detection
technique using random forests,” in First International Conference on
Availability, Reliability and Security (ARES’06), pp. 8 pp.–269, 2006.

[27] L. S. Shapley, “Stochastic games,” Proceedings of the National Academy
of Sciences, vol. 39, no. 10, pp. 1095–1100, 1953.

[28] G. Mclachlan, “Mahalanobis distance,” Resonance, vol. 4, pp. 20–26,
06 1999.

21

Authorized licensed use limited to: Wake Forest Univ. Downloaded on August 17,2022 at 15:08:02 UTC from IEEE Xplore.  Restrictions apply. 


