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Abstract

Reinforcement Learning (RL) algorithms have shown
success in scaling up to large problems. However,
deploying those algorithms in real-world applications
remains challenging due to their vulnerability to adversarial
perturbations. Existing RL robustness methods against
adversarial attacks are weak to large perturbations - a
scenario that cannot be ruled out for RL adversarial threats,
as is the case for deep neural networks in classification tasks.
This paper proposes a method called observation-shielding
RL (OSRL) to increase the robustness of RL against
large perturbations using predictive models and threat
detection. Instead of changing the RL algorithms with
robustness regularization or retrain them with adversarial
perturbations, we depart considerably from previous
approaches and develop an add-on safety feature for existing
RL algorithms during runtime. OSRL builds on the idea of
model predictive shielding, where an observation predictive
model is used to override the perturbed observations as
needed to ensure safety. Extensive experiments on various
MuJoco1 environments (Ant, Hoope, InvertedPendulum,
Reacher) environment demonstrate that our proposed OSRL
is safer and more efficient than state-of-the-art robustness
methods under large perturbations.
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1. Introduction

Recent years have witnessed significant advances in
reinforcement learning (RL), an area of machine learning

1https://www.endtoend.ai/envs/gym/mujoco

that achieved great success in solving various sequential
decision-making problems, especially with the development
of deep neural networks (DNN) for function approximation.
Most of the affected applications—from the games of
Go and Poker to robotics—involve more than one agent.
However, DNNs are susceptible to adversarial attacks,
especially those which rely on perturbing the inputs to the
network Papernot et al. (2015), Goodfellow et al. (2015),
Szegedy et al. (2014). In many RL applications, the
input to the agent’s policy, parameterized by a DNN, can
be adversarially perturbed using existing methods such as
FGSM (Fast Gradient Signed Method) Goodfellow et al.
(2015) and JSMA (Jacobian-based Saliency Map Attack)
Wiyatno and Xu (2018). Such perturbations decrease the
agent’s performance Huang et al. (2017), Lin et al. (2019).
With RL’s major implications in Artificial Intelligence (AI)
applications ranging from computer games to autonomous
vehicles, the safety and security of these algorithms are
critical.

In response to adversarial attacks as well as general
noise to policy inputs, recent research has focused on
improving the robustness of RL agents. Specifically,
there are two directions in this realm: adversarial training
and robustness regularization. The findings of adversarial
training in supervised learning Goodfellow et al. (2015),
Rajeswaran et al. (2017) have been applied to the RL
field but have demonstrated unstable results in terms of
performance both with and without the presence of an
adversary Pattanaik et al. (2017). Recently, Zhang et al.
(2021) formulated the state-adversarial Marko Decision
Processes MDP (SA-MDP), which follows the thinking of
worst-case to regularize RL algorithms. SA-MDP is able
to recover most of the lost reward due to perturbations in
RL tasks in Pong and MuJoco environments. To the best
of our knowledge, SA-MDP is the current best method
at developing an RL agent which is robust against small



Figure 1: An example of using OSRL in self-driving cars. The following
steps are depicted: (1) the car’s sensor is reading the current environment
state as a stop sign; (2) the adversary intercepts the sensor’s reading and
replaces it with a speed limit sign; and (3) OSRL’s prediction model predicts
the state as a stop sign using GPS maps.

perturbations (i.e., ϵ-perturbation budget Goodfellow et al.
(2015)) to the policy inputs. However, as is the case with
most robust RL methods, robustness is built within the
algorithms’ objective functions and involves re-training for
each ϵ values. Furthermore, robustness in SA-MDP can only
be proved for a small amount of perturbation, denoted by ϵ.

In image classification tasks, the ϵ-robustness is justified
since any larger amount of perturbation could be recognized
by a human observer Goodfellow et al. (2015). In RL
tasks, however, a human may not have consistent access to
the inputs provided to the RL agent, and even if they did,
inputs in many tasks are not as recognizable as an image.
Even when the inputs are images, the adversary perturbs the
internal observation of the agent, not the ground-truth state,
hence a human-observer would not be able to detect this
easily. As a result, it is important to develop an algorithm
which is robust not only to small and limited ϵ-perturbations,
but stronger perturbations as well.
This paper proposes Observation-Shielding Reinforcement

Learning (OSRL), the first sample-efficient model-based
safety method that can be used to mitigate large adversarial
perturbations on the RL observation. OSRL provides a
predicted observation based on the underlying environment
dynamics for the agent to continue working even when
targeted by strong attacks. Although the observation
prediction is a difficult problem, an accurate prediction
model can be developed under the assumption that system
dynamics are known or can be accurately modeled. For
instance, a self-driving car can build a model for the
environment dynamics (i.e., traffic signs) using GPS maps
such as Google Maps. Figure 1 shows an example of using
OSRL in a self-driving car environment. We will study the
robustness of Deep Reinforcement Learning (DRL) agents
in a more challenging setting where the agent has continuous
actions and its observations are strongly perturbed for a long
period of time.

OSRL is a two-step algorithmic framework. In
the first step, we leverage the dynamics modeling from
the model-based RL field to build an action-conditioned

predictive transition model that predicts the current
observation based on the previous observation, action, and
the learned environment dynamics. Using this model, we
develop a detection method that compares the physical
observation received from the environment (xt) and the
predicted observation generated by the prediction model
(x̂t). When adversarial perturbations are induced in the
current observation, the two values will be different by a
certain threshold, and their distantness indicates the presence
of adversarial attacks. In the second step of OSRL, once
adversarial perturbations are detected, the agent’s policy will
be adapted to use the predicted observation instead of the real
one to decide the optimal action.

To summarize, we build an agnostic, black-box approach
that can be utilized on top of any RL algorithm to mitigate
the risk of strong adversarial perturbations to the agent’s
observations. Our contributions are outlined as follows:

• We extend the Markov Decision Process (MDP) to
formulate the perturbation on the agent’s observations
by creating the Observation-Shielding MDP
(OS-MDP), and study the main conceptual differences
between MDP, OS-MDP, and partially-observable
MDP (POMDP).

• To solve OS-MDP, we develop a general two-step
robustness algorithm called OSRL, which can be
directly applied to the commonly-used threat model
of observation manipulation but with higher ϵ than
the state-of-the-art robustness methods. OSRL can be
practically and efficiently applied as an add-on defense
mechanism to any RL algorithm.

• We study the effectiveness of our proposed
model-based robustness method compared to
model-free robustness baselines based on adversarial
training and the worst-case robustness regularization.
We show that our OSRL can preserve the agent’s
performance in numerous MuJoco domains by up to
50% in terms of the total reward.

The remainder of this paper is organized as follows. We
discuss the background and related work on RL robustness
and safety in Section 2. Section 3 formulates the threat model
and introduces the proposed approach. Section 4 presents
our experiments and discusses the results. Final remarks and
conclusions are outlined in Section 6.

2. Background and Related Work

This section presents some important concepts related
to adversarial attacks on RL algorithms and discusses
the literature on robustness methods, allowing to fully
understand the proposed OSRL approach.



2.1. Reinforcement Learning

An RL agent learns by acting within an environment. Its
interaction can be characterized as an MDP described by the
tuple (S,A, P,R), where S is the set of states, A is the set
of actions available to the agent, P is the transition function
such that P (st, at) produces a distribution over all possible
next states at time t, and R is the set of all possible rewards
that an agent can receive for actions taken. The goal of an
agent is to learn the policy, π(st) = at, which maximizes the
total discounted reward over the whole task. To help discover
the optimal policy, an agent learns to approximate the value
function, v(si), which is the expected discounted reward that
can be gained by being in state si and following the policy
π. Formally, the value function is defined by:

v(si) = E
(∑

t=i

γtR(st, π(st), st+1)

)
(1)

2.2. Adversarial Perturbation in Image
Classification: FGSM

Image classifiers trained with DNNs misclassify
examples that are only slightly perturbed from correctly
classified examples drawn from the data distribution. For
images, such perturbations are often imperceptible to the
human vision system, yet they completely fool the deep
learning models. One such attack used often on image
classifiers is known as the Fast Gradient Sign Method
(FGSM). Goodfellow et al. (2015) proved that by adding an
imperceptibly small vector (noise) whose elements are equal
to the sign of the elements of the gradient of the cost function
with respect to the input, many models will misclassify the
input image using xadversarial = ϵ ∗ sign(∆xJ(Θ, x, y)).

To illustrate the adversarial examples through FGSM,
consider the images in Figure 2, potentially consumed by
an autonomous vehicle Lopez-Montiel et al. (2019) and
Stallkamp et al. (2012). To the human vision system, the
difference between those images are imperceptible; both
show a stop sign. However, DNN models misclassify the
right image as a yield sign, as described in Lopez-Montiel
et al. (2019). In fact, the right image was modified by
adding a precise perturbation to the left one. Attackers could
potentially use the altered image to cause an autonomous
vehicle to behave dangerously by maliciously modifying the
sign itself, e.g., with stickers or paint Papernot et al. (2016).

2.3. Adversarial Perturbations in RL

Though the FGSM attack is focused on image
perturbations, it carries over to all deep learning-based
algorithms such as DRL Huang et al. (2017), Lin et al.
(2019), and Russo and Proutiere (2019). Researchers in

Huang et al. (2017) attack the RL algorithms using FGSM
by perturbing the states every single time step in a given
episode. They analyzed three types of DRL algorithms
including Deep Q-networks (DQN) Mnih et al. (2013), Trust
Region Policy Optimization (TRPO) Schulman et al. (2017),
and A3C Mnih et al. (2016) and concluded that the reward
significantly dropped with all three algorithms, proving the
vulnerability of RL to adversarial attacks.

Following Huang et al. (2017), the work in Russo
and Proutiere (2019) models the selection of attacking time
steps as an MDP. By solving this MDP, an attacker could
identify the optimal time steps to launch attacks and thus
minimize the attack detection rate. In Lin et al. (2019),
two novel types of attack on a single RL agent system were
introduced: the strategically-timed attack and the enchanting
attack. The goal of the former is to reduce the agent’s reward
by only feeding adversarial examples to the DNN of the
agent for a selected small subset of timesteps in a certain
episode. In the enchanting attack, the researcher exploits
the fact that each action taken by the agent influences its
future observations. Therefore, the adversary could plan
a sequence of adversarial examples to maliciously lure the
agent toward a dangerous state. A detailed survey regarding
the adversarial perturbations on different RL settings can be
found in Xiao et al. (2019).

2.4. Adversarial Training

Adversarial training as a defense mechanism consists in
incorporating adversarial perturbations during training to
improve the robustness of the agent. Different techniques
have been developed for adversarial training in RL Yuan
et al. (2018). In Mandlekar et al. (2017), the adversarial
training has been applied using simple FGSM adversarial
examples on policy gradient algorithms, which have been
tested on simple RL tasks. The projected gradient descent
(PGD) attack was used in Pattanaik et al. (2017) to generate
more complicated adversarial examples in training RL
agents on Atari games. However, the results demonstrated a
trade-off between the agent’s robustness against adversarial
perturbations and its task performance. Moreover, training
RL agents with PGD adversarial examples often incurs
much higher computation cost than regular training. Other
adversarial training methods have achieved mixed results
Rajeswaran et al. (2017), Fischer et al. (2019).

One major limitation of adversarial training is its
failure against the transferability property of adversarial

Figure 2: Example of adversarial images Papernot et al. (2016).



examples Tramer et al. (2020), that is, when adversarial
examples generated for one agent would still successfully
attack another agent even if the latter has been trained
using adversarial training. Korkmaz (2022) studies the
correlation between the direction of high sensitivity
to adversarial perturbations across different training
algorithms, environments, and states. It also investigates
which features in the state space that are more sensitive
to the adversarial perturbations and if they are the same
across different algorithms and environments. The results
proves the transferability of the perturbations between DRL
algorithms which invalidates using adversarial training as
a defense mechanism against adversarial perturbations as
we stated in our paper. This paper’s purpose is different
from OSRL’s of developing a defense/mitigation technique
against the adversarial perturbations. However, the results
from Korkmaz (2022) can be used to develop more
generalizable defense technique shielding only the agent
when the state is perturbed in the direction with high
sensitivity such that the observation shield is only activated
in that direction. Therefore, naive adversarial training
by including adversarial examples in the training leads
to unstable training and does not significantly improve
robustness under strong ϵ-perturbation. To summarize, all
above training methods are not very effective for increasing
both robustness and performance. Moreover, they only focus
on small ϵ adversarial examples and fail to consider the case
of high ϵ adversarial examples attack in RL settings.

2.5. Robust Reinforcement Learning

Each element of the MDP framework for RL
(observations, actions, transition dynamics, and rewards)
can be a target for adversarial perturbation. Robust RL has
been studied to improve the robustness of those elements
against deliberate attacks and uncertainty. Recently, Zhang
et al. Zhang et al. (2021) developed State-adversarial MDP
(SA-MDP) to formulate the RL agent under adversarial
attacks on state observations. To solve SA-MDP, they
proposed a robustness policy regularizer that minimizes the
KL-divergence between the optimal policy and a perturbed
policy, which they trained on the worst-case perturbation.

Robust MDP (RMDP) Goyal and Grand-Clément
(2021) considers the worst case perturbation from transition
probabilities. In this framework, the RL agent observes the
true state from the environment and acts accordingly, but the
environment can choose from a set of transition probabilities
that minimizes the reward. The difference between RMDP
and SA-MDP is that in the former the adversary intercepts
and changes only the observations, while in the latter the
ground-truth states are changed, hence RMDP is more
suitable for modeling environment parameter changes.

Ying et al. (2022) provides a theoretical analysis of

the transition and observation disturbance in RL. It then
correlates both types of disturbances using the value function
range which measures the gap in the value function
between the best and worst states. They then develop a
safe method for RL under both disturbances called CVaR
Proximal-Policy-Optimization (CPPO). The experiments in
Ying et al. (2022) were conducted by introducing Gaussian
noise of 0.0-0.5 to the transition and observation of the RL
agent. OSRL, on the other hand, focuses on the observation
perturbation using the famous adversarial attack FGSM
with larger magnitude of perturbation in all environments.
Moreover, Ying et al. (2022) did not test their results against
the safe RL methods such as SA-DDPG. We think OSRL
can be extended in future work to shield the transition
function from perturbation which will make it comparable
with CPPO. The focus of our paper is on studying the
robustness of RL algorithms under adversarial attacks on
state observations by utilizing SA-MDP to implement our
adversaries. Furthermore, our solution to SA-MDP consists
in dealing with the intrinsic weakness of RL policies by
learning the environment dynamics during training time,
rather than directly regularizing function approximators.

3. Observation-Shielding Reinforcement
Learning (OSRL)

This section first describes our problem setup and threat
model, then presents our two-step OSRL robustness method
that can be used to ensure the safety of any DRL algorithm.
The overall architecture of OSRL is shown in Figure 3.

3.1. Threat Model

We consider adversaries that strongly perturb the
observation of the state provided to the agent at any given
time instant using FGSM Goodfellow et al. (2015). Let
xt ∈ RN and at ∈ RM be the observation vector and
action vector at time t, respectively. Let π : RN × RM

be the agent’s policy. Let f : RN × RM → RN be the
dynamics of the environment, which take the state-action
pair (xt, at) as inputs and output the next state st+1. The
adversary’s goal is to perturb the state observation xt into
adv(xt) while keeping the underlying true environment
state x unchanged to mislead the agent into incurring a
sub-optimal return, less than the return of the optimal policy
R(π(adv(x)) < R(π(x)). Formally, we formulate this goal
as an optimization problem.
Definition 1. Observation Perturbation: The adversary is

allowed to perturb the observation xt that the agent perceived
within an ϵ-budget:

∥∆xt∥∞ , Lx ≤ xt +∆xt ≤ Ux (2)

where ∆xt ∈ RN is the adversarial perturbation to the
agent’s observation and Lx ∈ RN , Ux ∈ RN are the



Figure 3: The overall architecture of the proposed method OSRL.

observation lower and upper bounds, respectively.
The adversary perturbs only the agent’s state

observations, such that the action is taken as π(a|adv(x))
instead of π(a|x). However, the environment still transits
from the true state x rather than adv(x) to the next
state. Since adv(x) is different from x, the agent’s
action from π(a|adv(x)) may be sub-optimal (i.e.,
π(a|adv(x)) ̸= π(a|x)), and thus the adversary is able to
reduce the reward, i.e., R(π(adv(x)) < R(π(x)).

3.2. OS-MDP

The observation perturbation in Definition 1 is aligned
with many adversarial attacks on state observations Huang
et al. (2017) and Lin et al. (2019) but cannot be characterized
by existing frameworks such as SA-MDP Zhang et al. (2021)
or POMDP Kaelbling et al. (1996). SA-MDP is a framework
that characterizes the decision-making problem under
adversarial attacks on state observations by extending MDP
into (S,A,B,R, p, γ), where B(s) is the perturbation set, to
restrict the adversary to perturb a state s only to a predefined
set of states adv(s) ∈ B(s) Zhang et al. (2021). B(s) is
an ϵ-bounded set of task-specific “neighboring” states of s,
which makes the observation meaningful yet not accurate.
Then, the same paper Zhang et al. (2021) extended several
DRL algorithms (DQN, DDPG, and PPO) to increase their
robustness against the observation perturbations by bounding
the performance gap between the state value function of
SA-MDP and the state value function of the regular MDP.
This bounding is only possible if the difference between
the action distribution of π in MDP and π in SA-MDP with
and without the perturbation is not too large (Theorem 5
in Zhang et al. (2021)). In other words, the ϵ-perturbation
must be bounded to restrict the power of the adversary.
Therefore, SA-MDP restricts the adversary to perturb a state
s only to a predefined set of states B(s) by ϵ and the RL
algorithms must be retrained every time ϵ changes. Our
paper utilizes State-Adversarial Deep Deterministic Policy
Gradient (SA-DDPG) from Zhang et al. (2021) as a baseline

model.
Since our perturbation is not limited within certain set

B(s) as in SA-MDP, we propose a novel extension to MDP
called Observation-shielding MDP (OS-MDP) to efficiently
mitigate large input perturbations without modifying or
retraining the underlying RL algorithms.
Definition2. OS-MDP: It extends MDP into
(S,A, I(X, X̂), R, p, γ) where the symbol I indicates the
selection of the predicted observation X̂ or real observation
X , and A,R, γ are defined as in MDP. S in OS-MDP is the
hidden state representation of the environment that the agent
does not have a direct access to during the attack.

OS-MDP is similar to POMDP Kaelbling et al. (1996)
in that the agent cannot directly observe the environment’s
state and must make decisions under uncertainty about the
true environment state. In POMDP, the agent deals with
this uncertainty by building its belief in the true state and
updating the probability distribution of the current state.
However, in OS-MDP the agent cannot trust its belief
distribution since the adversary can change the agent’s
perception about the environment dynamics by manipulating
its observations. To act effectively even with perturbed
observations, the agent needs to anticipate the consequences
of its actions within the environment for an extended period
of time into the future. OS-MDP agents can be equipped
with this ability by having access to models that can simulate
how the environments change in response to their actions.

Given an initial observation x0 and a pre-trained policy
π, our objective is to solve OS-MDP by minimizing the
threat impact. We specifically aim to minimize the total
distance between each real observation xt and predicted
observation x̂t while under the threat for T time steps in a
row. This can be defined by the optimization problem:

min
∀t∈T

d(xt, x̂t) s.t. at = π(xt) = π(x̂t),

p(xt+1|xt, at) = f(x̂t, at)
(3)

A common choice of d(xt, x̂t) is the squared L2. Here,
f is the learned dynamics model of the system (explained
next) and T is the attack length which can start from 0 to the
maximum length of the episode.

3.3. Predictive Transition Model f

If the environment dynamics f represents the exact
dynamics model of the environment, and assuming we have
an optimization transition model to solve Eq. 3, then
OSRL will always take the optimal actions even under
strong ϵ-perturbations. Therefore, learning a good dynamics
model (i.e., transition model) can help in developing a strong
defense mechanism against the threat model defined in Eq. 2.
Depending on the environment, different forms of f can be
utilized Weng et al. (2020). For instance, if the environment



Algorithm 1 Predictive Transition Model f

Input:
1: Pre-trained policy π, environment v, and trainable

hyperparameters θ
Output:

2: Learned transition model f(x, a, θ)
3: procedure LEARN DYNAMICS
4: Uagent = collect trajectories(π,v)
5: Urandom = collect trajectories(πrandom,v)
6: f(x,a,θ)←− supervised learning [Uagent∪Urandom, θ]
7: return f(x,a,θ)

can be represented by a linear system, then we could design
f(x, a) = αs+ βa, where α and β are unknown matrices to
be learned from the sample trajectories (xt, at, xt+1) pairs.

For a more complex environment, we could utilize a
non-linear model such as neural networks, which usually
has better prediction power but may require more training
samples. For either case, the model parameters α and β
or neural network parameters can be learned via standard
supervised learning with the sample trajectories pairs
(xt, at, xt+1). The training algorithm of the predictive
transition model is given in Algorithm 1. The model is
trained using trajectories generated from the agent’s policy
and from another random policy. Training with a random
policy helps the model to explore more the state space and
not focus only on the agent’s policy state space. Hence, the
model is able to generalize to unseen states during training.

3.4. OSRL Algorithm

After learning the transition model f , we now solve the
optimization problem in Eq. 3 to detect the adversarial
perturbations and use the predicted observations instead.
When the attack length is T > 0, Eq. 3 usually cannot
be directly solved by off-the shelf convex optimization
toolbox since the DRL policy π is usually a non-linear and
non-convex neural network. Hence, we incorporate Eq 3 into
the objective function of RL as a simple condition statement.

To detect the perturbed states, the OSRL agent compares
the difference between the predicted observation x̂ and
the observation x received from the environment, with an
environment-specific threshold β (line 8). If | x̂ − x |> β,
then the agent chooses to use x̂ as its policy input. Otherwise,
the agent uses x as the policy input (Figure 1). The choice of
β is arbitrary. In Section 4, we set β = ϵ/2 so that any time
the observation is perturbed, x̂ is used as policy input. Our
proposed algorithm is summarized in Algorithm 2.

4. Experiments and Results

We test OSRL against two baselines in 5 environments.
The first baseline is vanilla DDPG Lillicrap et al. (2019), an

Algorithm 2 Observation-Shielding RL

Input:
1: Pre-trained policy π, f(x, a, θ), ϵ, and episode length T
2: procedure OSRL
3: for all episodes do
4: X = []
5: x0 = initial state
6: while t ≤ T do
7: x̂t = f(xt−1, at−1)
8: if | xt − x̂t |> β then
9: at = π(x̂t)

10: else
11: at = π(xt)
12: end if
13: end while
14: end for

Figure 4: From left to right; Hopper, Ant, InvertedPendulum,
and Reacher environments we use to test our approach.

actor-critic method often used in continuous control tasks.
The second baseline is SA-DDPG Zhang et al. (2021) which
is built using the SA-MDP framework.

4.1. Experimental Setup

The test environments are InvertedPendulum-v0, Ant,
Hopper, Reacher environments from MuJoco as shown in
Figure 4:

• InvertedPendulum. It is the simplest control
task with four continuous observation features:
3-dimension real values, cosine of pendulum angle
cosφ, sine of pendulum angle sinφ, and pendulum
angular velocity φ.. The initial states are uniformly
randomized. The action space is continuous and
1-dimensional. The reward is calculated using the
following equation:
rt = −(φ2

t + 0.1 ∗ φ.2
t + 0.001 ∗ ||at||22)

• Ant. The state space is 111-dimension, position
and velocity of each joint, and contact forces. The
initial states are uniformly randomized. The action
is an 8-dimensional continuous space. The reward is
calculated using the following equation:
rt = x.

t − 0.5 ∗ ||at||22 − 0.0005 ∗ ||scontactt ||22 + 1

• Hopper. The state space is 11-dimension, position,
and velocity of each joint. The initial states are
uniformly randomized. The action is a 3-dimensional



Figure 5: Results obtained by the proposed OSRL in three environments: InvertedPendulum, Ant, Hopper, and Reacher and three levels of
ϵ-budget. We tested against two baselines: vanilla DDPG, and SADDPG agents. We also tested at four levels of attack rate: 25%, 50%, 75%,
and 100%.

continuous space. This environment is terminated
when the agent falls down. The reward is calculated
using the following equation:
rt = x.

t − 0.01 ∗ ||at||22 + 1

• Reacher. The state space is 11-dimension, position
and velocity of each joint. The initial states are
uniformly randomized. The action is a 2-dimensional
continuous space. The reward is calculated by the
following equation:
rt = [xt − xg ≤ ϵ]

Each observation feature for every environment can range
from negative infinity to infinity, so even ϵ-budgets as large
as 5 are not very large when compared to the range of values

the observations could potentially take.
We test each baseline in each environment with three

different levels of ϵ, whose choices are environment-specific.
The highest level demonstrates a level of perturbation under
which baseline methods fail to act optimally. We also test
each baseline against 4 different rates of perturbation: 100%,
75%, 50%, and 25% of the episode. The 0% perturbation
indicates an episode without any perturbation, and each
baseline achieves optimal reward in that scenario.

4.2. Implementing Predictive Transition

We develop our predictive transition model using a
fully-connected neural network for all tested environments.



As a dataset for training, validation, and testing, we use
100 episodes worth of ground-truth transitions sampled from
the optimal policy, and another 100 episodes sampled from
a random policy. We use the random policy to guarantee
that the training data for the transition model covers as
much transitions in the environment as possible, avoiding
the compound error phenomena. This data can be collected
after the weights of the policy have been trained, but before
deployment, so that the neural network is not vulnerable
to attacks at this stage. Using this dataset, we produce a
transition model that takes the previous observation xt−1 and
action at−1 as input, and predicts the next observation x̂t.
The details of this process is given in Algorithm 1.

We found that a two layer, fully connected network works
the best for predicting the next states in our environments
when compared to an LSTM network. We hypothesize
that this is because an LSTM network requires more than
one time step of past information to make predictions,
which increases the compounding error phenomenon. This
phenomenon occurs when multiple predictions are required
in a row, which can lead to straying from the ground-truth.

5. Results Analysis

In Figure 5, we see that as the perturbation budget
ϵ increases, the performance of OSRL remains constant,
whereas the performance of the baselines worsen. Since
OSRL does not rely on the observation when an attack is
detected, its performance is independent of the strength of
the perturbation. For baseline methods, given a large enough
perturbation to the observations, the RL agent eventually
takes a string of sub-optimal actions and fails the task.
We also notice that for each environment, the perturbation
level required to defeat the baselines are relatively low
when compared to the range of the state space. In each
environment, especially at low rates of attack, OSRL is
able to successfully complete the task even when faced with
attacks that cause baselines to fail quickly. Given even
larger perturbations, baselines perform worse, but OSRL’s
performance is constant and predictable.

We also find that OSRL often underperforms compared
to baselines in the case of high rates of small perturbations.
We attribute this behavior to the compounding error problem
seen often in model-based RL Moerland et al. (2021). We see
in each case that as attack rates decrease, the performance of
the OSRL agent increases, since less predictions are made
based on faulty predictions from past time steps.

RL robustness approaches such as SA-MDP need to
modify the RL algorithms to include an ϵ-robustness
regularizer while restricting the adversary’s power to the
same ϵ. As shown in Figure 5, these regularization
approaches fail severely when we increase the perturbation ϵ.
OSRL, on the other hand, can be directly used on top of any

RL algorithm without any changes made to the algorithm or
its learned policy, which makes OSRL truly agnostic toward
RL algorithms and adversarial models. The only required
pre-condition about the adversarial models is to only perturb
the state observations instead of perturbing the real state by
changing the environment dynamics (Definition 1).

Moreover, the proposed OSRL does not require the RL
algorithms to be trained with the same ϵ that will be used
for testing as in robust RL algorithms. In other words, our
solution is a mitigation approach that would work with larger
ϵ perturbation that the RL algorithms never been trained (i.e.,
regularized) with. Hence, predicting the states during the
adversarial attacks helps to mitigate the catastrophic impacts
of taking sub-optimal actions using the perturbed observation
π(at, adv(s)). It is worth mentioning that the success of our
approach is heavily influenced by the long-term prediction
accuracy of the predictive transition model.

6. Conclusion

We propose a method for increasing robustness and
safety against large perturbations in RL using predictive
models and threat detection. Our results show that existing
RL robustness methods are weak to large perturbations.
While our method is weak when the OSRL agent is attacked
for many time steps in a row, it can recover most of the
optimal reward when it has the opportunity to compare
predictions with the ground-truth state. If this method is
used in conjunction with existing RL robustness methods,
RL agents can achieve robustness against existing adversarial
threat models with no limit on their ϵ-budget. The success of
OSRL, however, is based heavily on the long-term accuracy
of its prediction model. In the future, we will attempt to
improve the long-term prediction accuracy of the model by
adapting state-of-the-art techniques used in model-based RL.
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