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Abstract— A growing trend in the field of autonomous vehicles 
is the use of platooning. The design of control algorithms for 
platoons is challenging considering that coordination among 
vehicles is obtained through diverse communication channels. 
Currently, Adaptive Cruise Control (ACC) is used in individual 
vehicles to regulate certain driving functions. ACC can be 
extended to leverage inter-vehicle communication, creating a 
tightly coupled vehicle stream in the form of a platoon. This 
extension, Cooperative Adaptive Cruise Control (CACC), 
typically assumes full communication among vehicles. In this 
paper, we develop a deep reinforcement learning based CACC 
that allows platooning vehicles to learn a robust communication 
protocol alongside their coordination policies. LSTM is used to 
implement ACC for each vehicle and is trained using policy 
gradient. To coordinate driving, the vehicle’s LSTM adapts to 
exchange relevant information with the other vehicles, creating 
the CACC. We simulate two platoons of 3 and 5 vehicles, 
respectively. We test our CACC with the learned 
communication protocol against full and inhibited 
communication baselines with and without a jamming attack. 
We also train our approach with local and global reward 
systems. Results suggest that models with individual rewards 
and the learned communication protocol achieve higher 
performance and faster convergence. 

Keywords; autonomous vehicles, reinforcement learning, 
coordination, jamming, LSTM 

I. INTRODUCTION 
Autonomous Vehicles (AVs) are one of a range of 

applications and concepts within the field of Intelligent 
Transportation Systems (ITS) [1]. To operate as truly 
autonomous ITSs, AVs must be able to process a large 
volume of data collected via sensors and communication 
links. These links can effectively construct a self-organized 
group of close-following AVs, otherwise known as a platoon. 
Platooned vehicles maintain a smaller headway compared to 
normal vehicles with the same speed, which improves traffic 
throughput as well as homogeneity [2].  Many modern 
vehicles are already equipped with Adaptive Cruise Control 
(ACC), i.e., a radar-based system which automatically 
maintains a safe distance from surrounding vehicles. 
However, ACC alone does not improve road traffic efficiency 
as we will show in our experiment. For this reason, projects 
like PATH and SARTRE have developed Cooperative 
Adaptive Cruise Control (CACC) [3, 4] as an extension to 
ACC. CACC leverages inter-vehicle communication to 
create a tightly coupled vehicle stream achieving the 
platooning objective of string stability [5]. String stability is  
the attenuation of perturbations introduced by an arbitrary 

vehicle in the platoon along the string in upstream direction 
to keep the inter-vehicles distance as small as required. 

Developing CACC algorithms is a complex task. Each 
AV must form an individual, local driving plan that is adapted 
through coordination with the other AVs to avoid potential 
collisions and maintain the string stability. Cooperative 
driving and safe operation are among the most challenging 
tasks for platoons, particularly since delays and/or loss of 
information from communication impairments can result in 
poor performance. Often, reliable communication is simply 
assumed when CACC is developed for platoon applications 
[6,7]. The impact of communication impairments on CACC 
coordination is not considered, or considered only partially 
[4], in most current works in the field.  

Recently, Reinforcement Learning (RL) has had rapid and 
significant progress in the development of autonomous 
driving systems [8-11]. Majority of this research assumes full 
communication among vehicles. This assumption is 
problematic as it could lead to safety and robustness concerns 
if communication is disrupted. Moreover, the previous 
research focus on platoons of only 2 vehicles (i.e. leader-
follower architecture), which are too simplistic for practical 
application. In this paper, we propose a platooning 
architecture using multi-agent reinforcement learning 
MARL-CACC in which cooperative vehicles learn a 
communication protocol alongside their coordination 
policies. Instead of simply adhering to a predetermined 
communication protocol, the specification and format of the 
communication in the MARL-CACC is not predetermined, 
but the vehicles collaboratively learn when and what to 
communicate.  

In MARL-CACC, we develop each vehicle’s ACC using 
a policy gradient RL with an LSTM network. During training, 
the LSTM has access to a continuous communication channel 
to enable vehicles to exchange information about their current 
states. The LSTM has a built-in “forget gate” to keep track of 
the important information and forget the rest to better utilize 
the communication bandwidth. Because the communication 
between vehicles’ controllers is continuous, the model is 
trained via back-propagation. We test our approach using two 
simulated platoons of 3 and 5 vehicles with three different 
communication protocols: our learned protocol, full 
communication, and inhibited communication. To study the 
limitations of multi-agent credit assignment in our approach, 
we design two different reward functions: a global average 
reward shared among all vehicles versus an individual reward 
for each vehicle. The results show that models with individual 

15

2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI)

2375-0197/20/$31.00 ©2020 IEEE
DOI 10.1109/ICTAI50040.2020.00013

Authorized licensed use limited to: Wake Forest Univ. Downloaded on September 24,2022 at 21:51:48 UTC from IEEE Xplore.  Restrictions apply. 



 

rewards outperform all other models in terms of convergence 
and trajectory length, regardless of the communication 
setting. However, the results also suggest using the learned 
protocol improves the string stability of the platoons. We also 
analyze the performance of our MARL-CACC under a 
simulated jamming attack. In this scenario, the learned 
communication protocol increases robustness and helps the 
vehicles avoid collisions, compared to a full communication 
model. 
We make the following contributions: 
1. We develop Multi-Agent Reinforcement Learning 

Cooperative Adaptive Cruise Control Model (MARL-
CACC) for autonomous driving in platoons. 

2. We empirically show that in the proposed MARL-CACC 
the vehicles learn when and what to communicate in 
order to improve the string stability of their cooperative 
driving in the platoon. 

3. We conduct experiments on platoons with 2 different 
sizes under a variety of communication settings, reward 
systems, and under a communication jamming attack. 
We show that MARL-CACC with the learned 
communication protocol outperforms the baselines with 
performance gaps that increase with scale. The results 
also show that individual rewards converge faster and 
better than global rewards. 
 
The remainder of this paper is organized as follows. The 

next section further discusses related work in autonomous 
platoons. In section III, we provide general overviews of 
MARL and LSTM.  Section IV formulates the problem, and 
the proposed approach is introduced in Section V. Finally, 
Section VI presents the experiments and discusses the results.      

 

II. RELATED WORK 
The idea of using platoons to improve traffic was 

originally proposed in [13] by PATH for Intelligent Vehicle 
Highway System (IVHS). The control tasks of their system are 
organized in a five-layer hierarchy. Physical, regulation, and 
coordination layers are distributed among controllers on each 
vehicle, whereas link and network layers control groups of 
vehicles. Our proposed CACC approach resides in the 
coordination layer. 

Michaud et al. [14] discuss different coordination 
strategies for automated vehicles in platoons, primarily 
focusing on communication patterns between vehicles in 
either a centralized or a decentralized fashion. However, they 
do not consider some important aspects of platoon control 
such as ensuring string stability. Segata et al. [3] develop an 
integrated simulator called PLEXE for studying strategies 
and protocols in platooning scenarios. This is the first attempt 
at designing a high-level platoon management protocol 
leveraging wireless vehicle-to-vehicle (V2V) communication 
with IEEE 802.11p in VANET-enabled vehicles.  

With the development of deep learning, the domain of RL 
has become a powerful learning framework for autonomous 
driving. To our knowledge, Yu [8] was the first researcher to 
suggest using RL for steering control. His approach uses 
neural networks to analyze the vision sensor input and 
generate the steering control while maintaining vehicle 

movement within road boundaries. This method uses the RL 
model both to eliminate the need for external supervision and 
to provide the system with continuous learning ability similar 
to human driving practice. RL has also been used by Se-
Young et al to investigate road-following [9]. Through RL, 
the control system indirectly learns the vehicle–road 
interaction dynamics, the knowledge of which is essential to 
staying on the road in high-speed road tracking. 

In another attempt, Ng et al. [10] propose an adaptive 
control system using gain scheduling learned by RL. The 
proposed controller performs well on a one vehicle system, 
but when it is deployed in a platoon, the performance 
becomes less smooth. In particular, as the second car attempts 
to track the leader, slight oscillations result. This oscillation 
is passed onto the subsequent vehicle, but for the vehicles at 
the end of the platoon, the oscillations do decrease, implying 
stability. Nevertheless, our approach is more convenient for 
platoon control as it does not engender such high oscillations. 

In his work, Pendrith [11] presents a distributed Q-
Learning (DQL) framework applied to a lane change advisory 
system. His approach uses a local perspective representation 
state, which represents the relative velocities of the 
surrounding vehicles. Unlike our algorithms, DQL does not 
consider the actual actions of the proximate vehicles, which 
eventually results in a lack of learning stability.  

In [15], a policy iteration method is utilized to learn 
parameters of a classical proportional-integral (PI) controller 
instead of direct longitudinal control. Researchers in [16], 
propose an informative reward design to ensure the safety and 
robustness of the Q-learning method applied to ACC. The 
proposed approach in [17] applies deep deterministic policy 
gradient (DDPG) to learn the continuous longitudinal control 
with predicted leading vehicle trajectories. Most of these 
works consider a predecessor-following problem in a two-
vehicle system with full communication rather than a multi-
vehicle setting like a platoon.  

Although some attempts have been directed toward 
CACC and ACC using RL, no research has yet used RL for 
learning the communication protocols between vehicles in 
CACC. This paper attempts to fill this gap by developing a 
coordination approach that learns a communication protocol 
to enhance the stability of the platoon. We also present a 
detailed study of different communication protocols and their 
effects on our approach.  

III. SYSTEM MODEL 

A. ACC Model and Vehicle Dynamics 
In this paper, we define the platoon as a set of connected 

autonomous vehicles N, traveling on a single lane freeway. 
We use Markov decision processes (MDP) [23] to model the 
ACC decision making process for each vehicle. An MDP is 
represented by , , , , , where S is the set of the 
possible states for the vehicle, A is the set of actions that can 
be taken by the vehicle, P is the transition probability 
function modeling the subsequent state after taking a 
particular action in a particular state,  is a discount factor that 
ranges from [0,1], and r is the reward function : . 
A policy :  is a mapping from states to actions. An 
optimal policy * is one such that  ,  is 
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maximized, where the MDP has a finite horizon of N steps 
and . The states S include the positions that the 
vehicle can be in during the trajectory while the actions A are; 
maintain the speed, accelerate, decelerate, and brake. 

Given a vehicle i  V, we denote its headway, i.e., 
bumper-to-bumper distance between i and its preceding 
vehicle i -1, by di, its velocity by  and its acceleration by . 
The vehicle dynamics are given by [19],                                      (1)                                                 (2)
Which we discretize as ,  , , ,         (3)
where   represents the time sampling step.  
The string stability constraint is defined for each vehicle as:  ,  
where  represents the preferred distance gap between 
any two successive vehicles. Speed, acceleration, and 
deceleration are constrained by: 0  ,                    (4)  ,                              (5) 

B. CACC Model  
We consider the Markov stochastic games which are 

known in AI community as multi-agent MDPs (MMDPs) to 
design the MARL-CACC. In particular, we focus on partially 
observable Markov games [19]. We design our MARL-
CACC as a Markov game for N vehicles with a set of states S 
describing the possible positions of all vehicles, a set of 
actions  … , and a set of observations …  for 
each vehicle. To choose actions, each vehicle i uses a 
stochastic policy :  0,1 , which produces the 
next state according to the state transition function :  …  . Each vehicle i obtains rewards as a 
function of the state and vehicle’s action :   , 
and receives a private observation correlated with the state : . Each vehicle i aims to maximize its own total 
expected return  where  is a discount factor 
and T is the trajectory time for the platoon. Without 
communication, each vehicle can act only based on local 
observations, reducing the CACC model to the individual 
ACC model. In this paper, we assume vehicles can 
communicate either with all vehicles in the platoon via the 
broadcasting channel or with selected vehicles via the V2V 
channel. 

To maximize the expected return for each vehicle, we use 
a policy-based model free method where the policy for each 
vehicle  ;  is directly parameterized and the 
parameter  is updated by performing, typically 
approximate, gradient ascent on . We particularly use 
the REINFORCE algorithm [20]. Standard REINFORCE 
updates the policy parameters  in the 
direction log ; , which is an unbiased 
estimate of  . 
The details of the REINFORCE algorithm are shown: 

 

IV. MARL-CACC FOR AUTONOMOUS DRIVING IN 
PLATOONS 

In this section, we develop our MARL-CACC model that 
facilitates the cooperative driving of platoons. We develop an 
LSTM for each vehicle’s ACC controller that coordinates 
with its neighbors to dynamically form the platoon’s CACC.  

A. LSTM-Based ACC Controller 
The ACC for each vehicle is developed using an LSTM 

[21]. A single LSTM cell consists of three gates: an input 
gate, an output gate, and a forget gate. The cell itself has a 
state which can be used to remember information. Each gate 
alters the cell state by way of weights and transfer functions. 
These weights are updated using backpropagation. Refer to 
[22] for more details about the update rules, and the equations 
for the update of the cell state.  

In this work, we use the cell  to represent the vehicle’s 
state (i.e. position) in the freeway at time t. The input to the 
cell is the observation obs from the vehicle and the output is 
the expected next position for the vehicle. The forget gate 
controls the propagation of information from the previous 
state to the current state. This mechanism eventually helps the 
vehicle learning to communicate only important information 
to other vehicles. The structure of the LSTM for ACC 
controller is depicted in Fig.1. At any timestep t, the 
equations below describe the internal structure of the LSTM-
ACC: 

 (6) 

      (7)    (8) 
where   is the input to the LSTM block; , , ,  and 

 are the input gate, the forget gate, the output gate, the cell 
state, and the hidden state respectively.  is a vector of the 
external new information that is a candidate for addition to 
the next cell, as shown in Fig.1. We use  to represent the 
communication vector that each vehicle exchanges with other 
vehicles and we call it the communication gate.  , , ,   are the weights between the 
input gate, the forget gate, the communication gate, and the 
output gate respectively. , , ,   are the 
weights between the cell state and the input gate, the forget 
gate, the communication gate, and the output gate 
respectively. Finally, , , ,   are the additive biases 
of the input gate, the forget gate, the communication gate, and 
the output gate, respectively. The sigmoid function .  and 
the hyperbolic activation function tanh(.) are used as 
activation functions. In equation (7) and (8), the cell state , 

17

Authorized licensed use limited to: Wake Forest Univ. Downloaded on September 24,2022 at 21:51:48 UTC from IEEE Xplore.  Restrictions apply. 



 

and the output of the LSTM block, , are calculated using 
the outputs from the gates in equation (6), where  denotes 
and element-wise multiplication. 

 
Figure 1: The structure of LSTM for ACC controller 

 
The decision about the actions for each vehicle is 

modelled as an MDP and solved using the policy gradient RL 
in conjunction with LSTM [25,26] as in Fig. 2. The LSTM 
takes in at time t one input vector obst, the hidden state ht-1, 
the communication vector from other vehicles , and the 
previous state st-1. Then, it generates one feature output vector 
ht for its hidden state, and the next state st. When the vehicle 
drives individually using its ACC, the LSTM will generate an 
empty communication vector ct. For the i-th vehicle, its 
policy takes the following form: 

  , ,  , , ,  (9)  (10)
where c is an encoder function parameterized by a fully 
connected neural network as in [12], and  is the vehicle 
action policy. 

c 
Figure 2: LSTM-based ACC for car i in 2 time steps 

B. MARL- CACC  
In order to coordinate the actions of the platooning 

vehicles in the MARL-CACC, we simply extend the 
independent ACC controller (equations 9,10), allowing 
vehicles to communicate their internal states. In our work, all 
vehicles use the same LSTM model, sharing parameters, 
which makes the MARL-CACC invariant to permutations of 
the vehicles and allows them to easily enter and leave the 
platoon. The equation (9) is extended as follows: 
        , , , ,  (11) 
where  is the communication vector received at each 
vehicle from other K vehicles computed as: 
                                                        (12) 
M is a linear transformation matrix for transforming the 
average communication vector to a communication tensor, 
and K is the number of vehicles in the communication or 
vision ranges. A key point is that M is dynamically sized since 
the number of vehicles in the ranges varies at any point in 
time. This motivates the normalizing factor  in equation 
(12), which rescales the communication tensor by the number 
of communicating vehicles. Fig.3 illustrates the details of our 
MARL-CACC approach. 

I. EXPERIMENT SETUP  
This section details the experiments run to test our 

MARL-CACC system. This system integrates both sensors  
 

Figure 3: MARL-CACC for k cars over 2 timesteps 

and inter-vehicle communication in a control loop to maintain 
secure, longitudinal, vehicle-following behavior. We here 
present the driving scenario, explain the communication 
protocols we test our system under, and describe the learning 
simulations. Through our experiments, we answer the 
following research questions: 
RQ1: What is the impact of full communication via a 
broadcast channel compared to our learned comunication 
protocol via a V2V channel on MARL-CACC convergence 
and platoon’s trajectory? 
RQ2: What reward function structure, local or global, leads 
to more effective coordination of platoon’s movement? 
RQ3: Can ACC alone without any communication achieve 
stable strings in platoons? 

A. Learning Task 
The learning task considered in this work corresponds to 

a Stop&Go (SG) scenario. This scenario has been used by 
several researchers for the development of autonomous 
controllers and the assessment of their efficiency and effects 
on traffic flow [27,28]. In our simulation, we develop a 
platoon of 3 cars and another of 5 cars, each placed on a 
stretch of freeway of length 20 and 30 grid cells, respectively. 
Each individual car enters the freeway within 3 timesteps of 
the car preceding it.  The leading vehicle starts at a velocity 
of 1 cell per timestep, takes an emergency brake, and then 
accelerates back to its initial cruising velocity as described in 
the scenario in [4]. The leading vehicle repeats this pattern 
until it reaches its destination, which is the end of the 
simulated freeway. The other vehicles must subsequently 
learn to follow the leading vehicle while keeping a desired 
headway of 3 cells.  

B. Reward Design 
The success of the RL agent depends on its reward 

function, as this function is used by the learning algorithm to 
direct the agent to areas of the state space where it can gather 
the maximum expected reward. As such, the reward function 
must be designed to appropriately encourage successful 
behavior. In this work, we consider rear-ended collisions, 
string stability, and traffic jams as metrics of platoon success 
(or lack thereof). Collision occurs when two vehicles are at 
the same location at the same time. Upon such a collision, we 
provide the vehicles involved in the collision with a negative 
reward rcoll. String stability is defined in terms of the inter-
vehicle distance , thus we provide a negative reward 
rstring when d . Finally, to reduce the travel time, we 
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provide a negative reward rtime on each time step to encourage 
the vehicles to keep moving forward. At timestep t, the 
individual reward for each vehicle (except the leading one 
which has hard-coded behavior) with  rear ended collisions 
and   error from  can be written as:                           (13)
The goal for each vehicle during training is to compute its 
policy  to maximize its reward r. 

C. Training 
To train the action policy  for each vehicle, we use the 

episodic REINFORCE algorithm as previously described. In 
our training architecture, we select the LSTM 
hyperparameters as shown in Table 1. Our model uses skip-
connections [29]. Training was run on a 32-core CPU with 8 
GB of memory and took between 22 to 55 hours based on the 
communication protocols and the size of the platoon as we 
will show. 

 
Table 1: Parameters for LSTM model 

Parameter Value 
Batch size 500 
Epoch size 100 episodes 
Kernel initializer Uniform 
Dropout rate 0.4 
Learning rate 0.001 
Hidden layer size 64 
Activation function Sigmoid 
Optimizer Adam 

D. Baselines 
We test our MARL- CACC approach under different 

reward and communication settings to answer the RQs. The 
models tested are: 
Individual ACC (IACC): In this controller, an LSTM-based 
ACC model is applied individually to each car’s observations 
to determine which action should be taken. As such, this 
model is essentially MARL-CACC without any 
communication. Each car solves its MDP using an LSTM as 
in Fig.2 and equations (9) and (10) in order to maximize its 
individual reward as defined in equation (13). This model 
partially adresses RQ3, and serves as the baseline for 
individual reward models for RQ2. 
Global ACC (GACC): This model is equivalent to IACC, 
except that the cars are trained with a global average reward, 
instead of  individual rewards. This global reward is defined  
as follows:                            (14) 
where k represents the total number of cars currently in the 
platoon.  This model is designed to answer RQ2 and RQ3. 
MARL-CACC with a Broadcast channel: This model 
represents a variation of our MARL-CACC approach such 
that vehicles communicate with each other and share their 
hidden states in a full and continous manner. Unlike our 
model, however, it is not modular and is inflexible with 
respect to communicaiton impairments, including the 
bandwidth. Each car maximizes its own individual reward as 
defined in equation (13). Platoon trajectories generated by 
this model help to answer RQ1 and RQ2. 

MARL-CACC with a V2V communication channel: This 
model represents our learned communication approach such 
that each vehicle uses V2V channel to selectively 
communicate with other vehicles. In conjunction with the 
previous model, this model addresses primarily RQ1 and 
partially RQ2. 
MARL-CACC-G with a Broadcast channel: This model is 
similar to MARL-CACC with a Broadcast channel, but it 
utilizes a global average reward as in equation (14) and 
similar to the model developed in [30]. K again represents the 
total number of cars in the platoon. 
MARL-CACC-G with a V2V communication channel: 
This is similar to our approach but with a shared global 
reward. This model is designed to address RQ1 and RQ2. 

II. RESULTS AND DISCUSSION 

A. Learning 
Due to the stochastic nature of the policy gradient 

algorithms, each baseline model was executed 5 times. We 
present results from the most effective policies of these 
models. We show the mean success rate for each model in 
platoons of size 3 and 5 vehicles in Fig.4. The success rate 
represents the percentage of successful episodes in each 
epoch. We define “success” as all cars reaching the 
destination without any rear-ended collisions in the 100 
timesteps of an episode.   

Fig.4 clearly shows that the performance of models with 
individual rewards improves faster and ultimately reaches a 
higher level than that of models with a global reward. This 
finding begins to answer RQ2 and suggests that ACC and 
CACC models should be developed using an individual 
reward structure for safe platoons with fast convergence. We 
propose that this effect is primarily due to the credit 
assignment problem in multi-agent systems [31]. When 
operating based on a global reward, cars are given no 
feedback regarding their individual contribution (negative or 
positive) toward the reward of the overall platoon. Because 
of their rather limited ability to internalize the value of their 
actions, it is much more difficult for the cars to learn an 
optimal policy. As such, the models based on a global reward 
do not achieve near the success rate of those based on an 
individual reward.  

Interestingly, in the platoon of 3 cars, we found that IACC 
converges faster than all other models. This is because the 
cars can individually, using only their local observations, 
avoid rear-ended collisions and reach the destination. There 
is no inherent need to coordinate or communicate with other 
vehicles to achieve the episode “success.” However, the 
platoon trajectories generated by IACC do not achieve stable 
strings between the cars, as we will discuss later. 

 
Figure 4: Mean success % for the most effective policy of each model in a 

platoon of 3 vehicles (left) and 5 vehicles (right) 
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Figure 5: Average steps taken to complete an episode in a platoon with 3 

vehicles (left) and 5 vehicles (right)  
We now attempt to address the first part of RQ1 about the 

impact of communication protocol on model convergence. As 
shown in Fig.4, the learned communication over V2V 
improves the performance of the platoon compared to full 
communication and is scalable more than other 
communication protocols. This benefit is larger when 
coupled with an individual reward system, but it remains true 
even for models with a global reward. Therefore, we 
conclude that safe platoons do not need full communication. 
Instead, cars can efficiently and quickly learn what and when 
to communicate with each other in order to coordinate their 
driving decisions to successfully avoid rear-ended collisions.  

To answer the second part of RQ1, how communication 
affects platoon trajectory, we consider the average number of 
steps takes each model to finish an episode (i.e. to safely 
reach the end of the freeway). Our results in Fig.5 suggest 
that communication only impacts the trajectory length when 
coupled with a global reward. In IACC, there is no need for a 
car to consider the actions of the other cars since its reward is 
local. Hence, the cars in the IACC-based platoon reach their 
destination relatively quickly. On the other hand, GACC, 
which also has no communication but uses a global reward, 
has a significantly longer trajectory. Similarly, we note that 
the both MARL-CACC-G models are slower than their local 
reward counterparts. Enabling communication via the 
broadcast channel does improve efficiency in a global reward 
model. In the 3-car platoon, the learned communication 
protocol improves it further still. Overall though, models with 
a local reward have shorter trajectory regardless of 
communication. Under a global reward, the cars learn to take 
the safest action (i.e. brake) more often, which leads to longer 
trajectories. Therefore, we conclude that a local reward, 
especially in conjunction with our learned communication 
protocol, can increase the efficiency of a platoon. 

B. Testing 
After training, we tested the policies generated for each 

model in a similar Stop&Go scenario. Following the 
convention in [4, 28], we quantify string instability using the 
root-mean-square error (RMSE) of the headways between 
cars. Since this metric is based on the size of the squared 
errors, it gives greater weight to values that are farther from 
the desired distance. Table 2 shows the average RMSE for the 
headways in platoons of 3 and 5 cars across all tested models. 
It is important to mention that we trained the three models 
with global rewards for an extra 5000 epochs to improve their 
convergence before testing.  

Table 2 shows that both platoons are most stable using our 
MARL-CACC+V2V model with the learned communication.  

 

Table 2: Headway Avg. RMSE values for the simulated platoons 
 3-Cars 5-Cars 
MARL-CACC+Broadcast 1.10 0.96 
MARL-CACC+V2V 0.54 0.69 
MARL-CACC-G+Broadcast 0.89 0.94 
MARL-CACC-G+V2V 0.73 1.02 
GACC 1.03 1.42 
IACC 1.00 1.36 

The 3-car platoon is least stable using the MARL-
CACC+Broadcast,and the 5-car platoon using GACC. Since 
both the MARL-CACC+Broadcast and the MARL-
CACC+V2V models use individual rewards, this drastic 
difference suggests that the communication setting plays a 
major role in determining string stability. In both platoons, 
the MARL-CACC+V2V model achieves better stability with 
less headway error compared to models with full 
communication. We propose that this is because cars 
communicating via broadcast are indiscriminately acting 
upon the information received from other cars, even when the 
sender is far away. In contrast, cars in MARL-CACC+V2V 
learn to only communicate the information that will help to 
improve their driving plans.  

We attempt to understand what the cars learn to 
communicate in the MARL-CACC+V2V model by further 
analyzing the 5-car platoon. We start by recording the hidden 
state  of each car and the corresponding communication 
vectors  which represents the information that the car i 
sends to the hidden state of other cars at timestep t. Fig. 6 (top 
and bottom) shows the principle component analysis (PCA) 
of the communication and hidden state vectors respectively. 
Fig. 6 (top) shows a diverse range of hidden states, while 
(bottom) reveals far more clustered communication vectors, 
many of which are close to zero. This indicates that the two 
vectors carry different information, which suggests that the 
cars learn not to communicate all information in their hidden 
state unless necessary. 

Fig.7-9 show the specific inter-vehicle distances over the 
first 17 and 29 timesteps for each model in 3-cars and 5-cars 
platoon scenarios, respectively. For reference, we define the 
optimal distance to be 3 cells. Interestingly, in both models 
with the learned communication protocol (Fig.7), we see that 
the headways between cars at the end of the string are 
generally more consistent than the ones at the beginning.  

 

 
Figure 6: 2D PCA of hidden state vectors h (top) and communication 

vectors c (bottom)for MARL-CACC+V2V in the 5-car platoon 
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Figure 7: Headways in 3-car (top) and 5-car (bottom) platoons using 

MARL-CACC+V2V and MARL-CACC-G+V2V  
 

This behavior indicates that the leader’s accelerations and 
decelerations are not amplified down the line of the platoon. 
This result is promising as, in a large enough platoon, 
amplification could result in a complete halt of traffic flow. 
In the 5-cars platoon, the joining maneuver in MARL-
CACC+V2V results in instability whenever a new car joins 
the platoon. Shortly after, however, the cars learn to keep the 
exact distance of 3 cells between one another (except the 
second car which is directly affected by the leader’s braking). 
In MARL-CACC-G+V2V in the 5-cars platoon, cars learn to 
avoid collision by keeping 4 cells between each vehicle. This 
behavior explains why this model has a higher RMSE than its 
counterpart in the 3-car platoon. 

Notably, full communication via the broadcast channel 
results in less stable platoons (Fig.8). Examining the headway 
trends in the 3-cars platoon for both the MARL-CACC and 
MARL-CACC-G models, it becomes apparent that, when the 
lead vehicle breaks, the second car reacts in an attempt to 
avoid collision. At the same time, we observe that the third 
car also abruptly reacts, as indicated by the second headway. 
Although the cars successfully avoid rear-end collisions, the 
distance error at the head is exacerbated at the last car, 
significantly decreasing the string-stability of the platoon. We 
propose that full communication between the cars is the 
source of this instability. The last car receives and 
incorporates information from the lead car, even if this 
information does not immediately affect it. Considering this, 
we conclude that communicated information enables the 
platoon to learn a better policy for string stability only when 
the cars coordinate in small groups and not necessarily when 
they coordinate as a one unit via a broadcast channel. This 
result once again emphasizes the importance of limiting the 
communication in platoons to efficiently achieve string 
stability.  For the platoon with 5 cars, both models with full 
communication learn to keep a large, constant distance 
between vehicles to mitigate the impact of repetitive braking 
by the leader. Therefore, the RMSE of the headways in both 
models are relatively high, which ultimately defeats the 
purpose of using CACC instead of simply ACC. 

The headways in the IACC model in both platoons (Fig.9 
left) reveal that the leader’s repeated braking has very little 
impact on other cars in the platoon. Since there is no 
communication between the cars, each vehicle simply learns 
to maintain a relatively large, constant distance from the 
vehicle ahead of it in order to avoid collisions. Although this 
strategy is effective to that end, it clearly reduces the string 
stability of the platoon.  

 

 
Figure 8: Headways in 3-car (top) and 5-car (bottom) platoons using 

MARL-CACC+Broadcast and MARL-CACC-G+Broadcast  
 

On the other hand, the headways in the GACC models 
(Fig. 9 right) are more disturbed by the leader’s behavior. 
Because all the cars share the same reward, they attempt to 
coordinate their actions. However, since communication is 
inhibited, the cars are unable to adequately stabilize their 
driving.  

  

 
Figure 9: Headways in 3-car (top) and 5-car (bottom) platoons using IACC 

GACC models  

C. Testing under Jamming Attack 
We investigate the robustness of the learned 

communication protocol by testing MARL-CACC+V2V and 
MARL-CACC+Broadcast models on a freeway under a 
partial jamming attack. A channel jamming attack is a type of 
Denial of Service (DoS) attack that aims to block access to a 
communication channel by high power transmission on the 
channel or by injection of dummy messages. We simulated 
this attack by placing  a simple, stationary, roadside jammer 
in a specific location on the freeway with a 6-cell range as 
described in [32]. We did not train the models on this 
environment to assess the difference between the robustness 
of the full communication and learned communication 
settings in sudden and dangerous situations. Additionally, we 
did not implement countermeasures against this attack to 
focus instead on developing a CACC approach that alleviates 
the risk of such attacks altogether. Our MARL-CACC+V2V 
model achieves this by learning only the necessary 
communication instead of constantly relying on information 
from each vehicle’s hidden states. 

The headways in the 5-cars platoon for both models are 
depicted in Fig. 10. The average RSME for MARL-
CACC+Broadcast is 3.20 and, notably, cars 1, 2, and 3 all had 
rear-ended collisions (Fig. 10 left). In contrast, our learned 
communication approach in MARL-CACC+V2V has an 
average RMSE of only 1.07 without any collisions (right). 
Hence, we propose that the stability and safety of platooning 
vehicles can be increased by allowing them to learn how and  
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Figure 10: The impact of the jamming attack on the 5-cars platoon using 

MARL-CACC model 

when to communicate with each other instead of continuously 
sharing their actions and observations at every time step. 

III. CONCLUSION AND FUTURE WORK 
In this work, we developed a MARL approach to enhance 

the string stability of platoons of autonomous vehicles. The 
proposed approach uses LSTM and REINFORCE to 
coordinate driving in CACC controllers. We tested our 
approach under different communication protocols and two 
different reward function structures, individual and global. 
The results indicated that the model that uses individual 
rewards and the learned communication protocol via a V2V 
channel achieves the best convergence, stability, and shortest 
travel time. Our approach is thus practically significant as it 
does not require the assumption of full, stable communication 
among platoon vehicles as many contemporary models do. 
One limitation of this work is that the cars in some models 
have oscillatory behaviors due to a discrete state space. We 
plan to test our approach in a realistic, continuous state space 
in future work to address this oscillation.  
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