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Abstract. Cooperative Multi-Agent Reinforcement Learning (c-MARL)
enables a team of agents to determine the global optimal policy that max-
imizes the sum of their accumulated rewards. This paper investigates the
robustness of c-MARL to a novel adversarial threat, where we target and
weaponize one agent, termed the compromised agent, to create natural
observations that are adversarial for its team. The goal is to lure the com-
promised agent to follow an adversarial policy that pushes activations of
its cooperative agents’ policy networks off distribution. This paper shows
mathematically the exploitation steps of such an adversarial policy in the
centralized-learning and decentralized-execution paradigm of c-MARL.
We also empirically demonstrate the susceptibility of the state-of-the-art
c-MARL algorithms, namely MADDPG and QMIX, to the compromised
agent threat by deploying four attack strategies in three environments
in white and black box settings. By targeting a single agent, our attacks
yield highly negative impact on the overall team reward in all environ-
ments, reducing it by at least 33% and at most 89.6%. Finally, we provide
recommendations on improving the robustness of c-MARL.

Keywords: Multi-Agent Reinforcement Learning · adversarial policies
· robustness · security threats · compromised agent.

1 Introduction

The advances in single-agent Reinforcement Learning (RL) algorithms have
sparked a new interest in cooperative Multi-Agent Reinforcement Learning (c-
MARL). Several c-MARL training algorithms have been recently developed for
deployment in several application domains such as cyber-physical systems [3],
sensor networks, and social sciences. Nonetheless, these algorithms present new
security vulnerabilities. For instance, it may not be surprising that adversar-
ial attacks exist in RL to decrease the agent performance [8, 14]. However, the
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vulnerability of the compromised agent in c-MARL systems has been only inves-
tigated once in a white-box setting against the QMIX algorithm [13] using a mod-
ified version of the adversarial example attack JSMA [24] in one environment.
Therefore, it is important and necessary to develop a systematic methodology
for designing non-trivial adversarial attacks which can efficiently and effectively
exploit the vulnerabilities of c-MARL in order to design more robust algorithms.

Adversarial attacks on c-MARL are different from those carried out against
individual RL agents [25, 8, 11]. First, each agent in c-MARL interacts with and
modifies the state of the environment not only for itself but also for its cooper-
ative agents. For an episode of L timesteps, an adversary has 2L ×N choices of
attacking or not attacking at least one agent at each timestep in a system having
N agents, which significantly amplifies the attack surface for c-MARL compared
to RL. Second, an adversary to c-MARL may have different goals such as reduc-
ing the final rewards of the whole team or maliciously using some agents’ actions
to lure other agents to dangerous states. We call this vulnerability the compro-
mised agent vulnerability, which is different from adversarial attacks against an
individual RL agent that aim to directly minimize the agent’s reward.

The compromised agent vulnerability is relevant to the robustness of multi-
agent domains such as autonomous driving platoons [17], negotiation [21], and
automated scalping trading [10]. In those settings, agents work in environments
populated by other agents, including humans, which increases the number of
potential adversaries against the system. In such domains, it is not usually feasi-
ble for the adversary to directly change the victim policy’s input via adversarial
examples; it can only modify the victim agent’s observations via its own actions.
For example, in autonomous vehicle platoons, pedestrians and other drivers can-
not add noise to arbitrary pixels, or make a building disappear. Nonetheless, they
can take adversarial actions that negatively affect the camera image, but only
in a physically realistic fashion. Similarly, in financial trading, an adversary can
send orders to an exchange which will appear in the victim’s market data feed,
but the attacker cannot modify the observations of a third party’s orders.

In this paper, we present an algorithmic framework to study the robustness of
c-MARL algorithms. First, we reverse engineer the c-MARL algorithms in the
centralized-learning and decentralized-execution paradigm to exploit the com-
promised agent vulnerability. In this paradigm, the c-MARL algorithms use a
centralised learning and make use of decentralised policies with only local ob-
servations during execution. Then, we empirically analyze the impact of this
vulnerability on the robustness of two of the state-of-the-art algorithms in three
different environments. We develop four attack strategies to exploit the compro-
mised agent vulnerability in c-MARL in white-box and black-box settings, where
the adversary has access to the reward function, state transition function, and
the policies of all agents in the former settings and has no knowledge of these in
the latter. Our contributions are threefold:

1. We show the feasibility of the compromised agent vulnerability by reverse-
engineering the algorithms in the centralized-learning decentralized-execution
paradigm of c-MARL.
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2. We design four attack strategies to demonstrate the impact of the compro-
mised agent vulnerability on the robustness of c-MARL algorithms.

3. We thoroughly analyze the robustness of the c-MARL algorithms MADDPG
[16] and QMIX [18] under our attacks in three different environments involv-
ing cooperative and competitive tasks 4. The designed attacks bring down
the team reward in all environments by at least 33% and at most 89.6%.

The remainder of this paper is organized as follows. We discuss the back-
ground and related work on c-MARL robustness in Section 2. Section 3 formu-
lates the threat model and introduces the proposed approach. Section 4 presents
our experiments and discusses the results. We provide our recommendations in
Section 5. Final remarks and conclusions are outlined in Section 6.

2 Background and Related Work

This section presents the background information necessary to fully understand
our proposed attack strategies on c-MARL and discusses the related work.

2.1 c-MARL

In this paper, we model the c-MARL system using stochastic games [19]. For an
n-agent stochastic game, we define a tuple:

G =
(
S,A1, ..., An, r1, ..., rn, T, γ

)
(1)

where S denotes the state space, Ai and ri are the action space and the reward
function for agent i ∈ 1, ..., n, respectively. γ is the discount factor for future
rewards, and T is a joint state transition function T : S×A1×A2..×An → △(S)
where △(S) is a probability distribution on S. Agent i chooses its action ai ∈ Ai

according to its policy πi
θi(ai|s) parameterized by θi conditioning on some given

state s ∈ S. The collection of all agents’ policies πθ is called the joint policy
where θ represents the joint parameter. For convenience, we interpret the joint
policy from the perspective of agent i as:

πθ = (πi
θi(ai|s)π−i

θ−i(a
−i|s)) (2)

where a−i = (aj)j ̸=i, θ
−i = (θj)j ̸=i, and π−i

θ−i(a
−i|s) is a compact representation

of the joint policy of all complementary agents of i [15]. At each stage of the
game, actions are taken simultaneously. Each agent is assumed to pursue the
maximal cumulative reward [20] expressed by:

max ηi(πθi) = E

[ ∞∑
t=1

γtri(st, a
i
t, a

−i
t )

]
(3)

4 https://github.com/SarraAlqahtani22/MARL-Robustness
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with (ait, a
−i
t ) sample from (πi

θi , π
−i
θ−i). Correspondingly, for a game with an infi-

nite time horizon, the state-actionQ-function can be defined byQi
πi
θ
(st, a

i
t, a

−i
t ) =

E

[ ∞∑
l=0

γlri(st+1, a
i
t+1, a

−i
t+1)

]
.

The centralized-learning and decentralized-execution paradigm of MARL
has been followed by the major c-MARL algorithms including MADDPG [16],
COMA [5], MF-AC [27], and Q-Mix [18]. Although those algorithms simplify the
learning in multi-agent environments by using the non-correlated factorization
of the joint policy, they are vulnerable to the compromised agent attack shown
in this paper. This vulnerability arises when the implicit connections among
the agents’ actions are ignored. Agents trained with such algorithms cannot ef-
ficiently identify the normal and abnormal behaviors of other agents working
together to accomplish certain tasks. This paper focuses on attacking MAD-
DPG [16] and QMIX [18], the lead algorithms in the centralized-learning and
decentralized-execution paradigm.

2.2 Related Work on Adversarial Attacks in MARL

Previous work has shown the vulnerability of individual RL agents to adversarial
attacks, in which the adversary perturbs the agent’s observation to degrade its
performance [8]. Other attacks reduce the number of adversarial examples needed
to decrease the agent’s reward [14] or trigger its misbehavior [28]. However, the
literature did not study the security of c-MARL and the effects of cooperation
on the success of attacks. The closest work to our proposed threat model and
attack strategies proposes a two-step attack against QMIX with the objective of
reducing the total team reward by perturbing the observation of a single agent
[13]. The authors extend an existing adversarial example method, namely JSMA
[24], to create d-JSMA which is more suitable for attacking an RL model with a
low-dimensional feature space. They focus on white-box settings to launch their
attack by assuming the knowledge of the team reward function.

The approach proposed in this paper is fundamentally different since it in-
volves a physically realistic attack model that does not depend on directly modi-
fying the agents’ observations with adversarial examples. Instead, we weaponize
one agent to follow an adversarial policy that pushes activations of its coopera-
tive agents’ policy networks off distribution. We also conduct our attacks in both
white and black box settings against QMIX and MADDPG in three different en-
vironments. Also, compared to the work of Lin et al. [13] which focuses on attacks
in the competitive multi-agent setting, our threat model considers cooperative
teams of agents in both fully-cooperative and competitive environments.

3 Proposed Adversarial Approach

We first describe our threat model then mathematically explain how an adversary
can exploit the compromised agent vulnerability and carry out various attacks.
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3.1 Threat Model

We assume that the attacker can take over at least one benign agent (the com-
promised agent m) and use it to create naturally adversarial observations via its
actions to attack the other agents −m in the system. Recall that the joint tran-
sition probability in c-MARL is p(st+1|st, a1, ..., an), indicating that the attack
surface for c-MARL includes any perturbations to the state st through adversar-
ial examples and any perturbations to the other agents’ actions a1, ..., an through
the compromised agent attacks. This threat targets the agents’ actions instead
of the states’ features usually targeted by adversarial examples [8, 14, 28]. The
attacker can only intercept the compromised agent’s actions via network attacks
such as hijacking, impersonation, and Man in The Middle (MiTM). Studies have
shown that multi-agent systems are vulnerable to such attacks [4, 1, 7]. The at-
tacker’s goal is to weaponize actions taken by the compromised agent to distract
team members from accomplishing their task either by preventing them from
converging to the optimal policy or misleading them to a dangerous state.

In the white-box setting, the adversary may have access to the environment’s
reward function, the policies of every agent in the system, and the ground truth
state transition probability p(st+1|st, a0, . . . , an), where st is the concatenation
of each agents’ observations (o1, . . . , on). Conversely, a black box adversary has
no access to the internal configuration, rewards, or policies of benign agents
including the compromised one. We also assume that all agents, including
the compromised one, follow fixed policies corresponding to the common case
of a pretrained model deployed with static weights. This model holds particu-
larly well for safety-critical systems, where it is a standard practice to validate a
model, then freeze it, to ensure that it does not develop any new problems due
to training [25]. Since the agents’ policies are held fixed, the Markov game G in
Eq. (1) reduces to a single-player MDP, denoted by Gm = (S,Am, Tm, Rm), that
the adversary must solve to generate a new policy by which the compromised
agent m will achieve the adversary’s goal of attacking the other agents −m.

The compromised agent problem in c-MARL is defined by:

max

t=T∑
t=0

KL (p(a−m
t |amt , st)||p(a−m

t |a∗mt , st)) (4)

where a∗m represents the adversarial actions generated by the adversarial poli-
cies for the compromised agent m. This equation maximizes the KL-divergence
between the conditional policy of −m on the action am at time t and the same
conditional policy if agent m deviates from its policy and takes an adversar-
ial action a∗m. The adversary can then intervene on amt by replacing it with
the action a∗mt which will be used to compute the next action of agents −m,
p(a−m

t+1|a∗mt , smt ), pushing the activations of their policy networks off distribution.
Practically, we solve the problem in Eq. (4) by finding the adversarial actions
a∗m for the compromised agent following one of the proposed attack strategies
in Section 3.3 to maximize the KL-divergence.
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Fig. 1. The architecture of the deep learning-based behavioral cloning.

3.2 Exploiting The Compromised Agent Vulnerability

We now show the steps of exploiting the compromised agent vulnerability in the
centralized-learning and decentralized-execution c-MARL algorithms. The goal
is to reverse engineer the learning algorithm by correlating the learning process
of agent m’s policy with the learning of the conditional policies of agents −m.
First, we collect state-action pairs by observing the agents during reconnais-
sance as a trajectory τ = [(s1, a

m
1 , a−m

1 ), ..., (st, a
m
t , a−m

t )]. We use τ for training
an Adversarial Inverse RL (AIRL) algorithm [6] to discover the hidden reward
function behind agent m’s behavior, rm(st, a

m
t , a−m

t , st+1), while considering the
actions taken by the other agents a−m

t as part of the environment state.
The second step is to reverse engineer the joint policy in Eq. (2) to approxi-

mate the agents’ policies. The joint policy can be reformulated as [23, 26]:

πθ(a
m, a−m|s) = πm

θm(am|s)π−m
θ−m(a−m|s, am)︸ ︷︷ ︸

Compromised agent’s perspective

= π−m
θ−m(a−m|s)πm

θm(am|s, a−m)︸ ︷︷ ︸
other agents’ perspective

(5)

From the perspective of the compromised agent m, the first equality in Eq.
(5) indicates that the joint policy can be essentially decomposed into two parts:
agent m’s policy and the conditional policies of agents −m. The conditional part
of the first equality π−m

θ−m(a−m|s, am) represents what actions would be taken by
victim agents −m given the fact that they know the current environment state
and agent m’s action, i.e., what the compromised agent believes the other agents
might think based on their original policy.

In the white-box setting, the adversary has direct access to the agents’ poli-
cies and the ground truth of the state transition function. In the black-box set-
ting, the adversary needs to develop an approximation of the transition function
and the conditional policies of the victims π−m

θ−m(a−m|s, am) via the behavioral
cloning model depicted in Fig. 1, which is trained by minimizing the loss func-
tion L(a, πθ) to approximate each agent’s policy ρ−m

ϕ−m(a−m|s, am). The super-
vised learning model for the state transition function is similar to the behavioral
cloning model with multiple heads but with different learnable parameters Φ:

TΦ = p(st+1|st, a1, ..., an) (6)
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By approximating the actual policies of the victims −m, the learning task for
the compromised agent m can be formulated by:

argmax
θm,ϕ−m

(
πm
θm(am|s)ρ−m

ϕ−m(a−m|s, am)
)

(7)

With the learning protocol in Eq. (7), the adversary can learn the compromised
agent m’s policy and approximate the conditional policy of the victim agents
−m given m’s actions using probabilistic RL [12]. We first derive the probability
of τ being observed during the reconnaissance phase as follows:

p(τ) =
[
p(s1)

∏T
t=1 p(st+1|st, amt , a−m

t )
]
exp

(∑T
t=1 r

m(st, a
m
t , a−m

t )
)
(8)

Since we used AIRL to discover rm using τ , the goal becomes to find the best
approximation of πm

θm(amt |st)ρ−m
ϕ−m(a−m

t |st, amt ) to maximize Eq. (7) such that the

induced trajectory distribution p̂(τ) can match the ground-truth of trajectory
probability p(τ):

p̂(τ) = p(s1)
T∏

t=1

p(st+1|st, amt , a−m
t )πm

θm(amt |st)ρ−m
ϕ−m(a−m

t |st, amt )

(9)
We can now optimize the approximated policies of the victim agents by mini-
mizing the KL-divergence between Eq. (8) and Eq. (9):

KL(p̂(τ)||p(τ)) =

−Eτ p̂(τ)[logp(τ)− logp̂(τ)] =−
t=T∑
t=1

Eτ p̂(τ)

[
rm(st, a

m
t , a−m

t ) +

H
(
πm
θm(amt |st)ρ−m

ϕ−m(a−m
t |st, amt )

) (10)

where H is the conditional entropy on the joint policy that potentially promotes
the exploration for both the malicious agent m’s best action and the victims’
conditional policies. Minimizing Eq. (10) yields the optimal Q-function for agent
m (Theorem 1 in [23]):

Qm
πθ

= log

∫
a−m

E(Qm
πθ
(s, am, a−m))da−m (11)

The corresponding −m conditional policy becomes:

ρ−m
ϕ−m(a−m

t |st, amt ) =
1

Z
E(Qm

πθ
(s, am, a−m)−Qm

πθ
(s, am)) (12)

To solve Eq. (12), we maintain two Q-functions and iteratively update them
using the learned reward function for agent m and the observations in τ as the
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Fig. 2. The steps of exploiting the compromised agent vulnerability.

ground-truth. Eq. (11) approximates the original policy of m while considering
the approximated conditional policies of agents −m in Eq. (12). The overall
steps of exploiting the compromised agent vulnerability are shown in Fig. 2. For
the proof of Eq. (11) and Eq. (12), please check [23].

3.3 Attack Strategies

According to Fig. 2 and Eq. (10), we still need to generate the adversarial policies
for the compromised agent to choose a∗mt . In this section, we introduce our attack
strategies to generate those policies under two different categories: attacks based
on the compromised agent’s self-destruction strategies, and attacks based on
destructive strategies of other agents’ objectives.

Self-Destruction Adversarial Policies This category focuses on minimizing
the compromised agent’s individual reward which indirectly reduces the reward
of the c-MARL team.

Randomly-Timed Attack: We attack the victims’ policies by developing a set
of randomized off-distribution adversarial policies for the compromised agent to
sabotage the c-MARL system through its own actions. At a certain percentage
of timesteps, the adversary changes the compromised agent’s action into a∗mt
based on a random off-distribution policy.

Strategically-Timed Attack: This attack strategically selects a subset of timesteps
to change the compromised agent’s actions. We first calculate the c-function [14]:

c(st) = max
at

(πm(st, at))−min
at

(πm(st, at)) (13)

and launch the attack if c > b, where b is a chosen threshold that indicates the
desired attacking rate. The idea behind this attack is that the adversary chooses
to alter the compromised agent’s action only when it strongly prefers a specific
action (the action has a relative high probability), which means that it is critical
to perform that action; otherwise, its accumulated reward will be reduced.
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Adversarial Policies for Destructing Other Agents The other method to
attack c-MARL algorithms is to sabotage the objectives of the other agents in the
system using the compromised agent’s actions, which directly pushes activations
of c-MARL agents’ policy networks off-distribution.

Counterfactual Reasoning-Based Attack: This attack predicts the compro-
mised agent’s counterfactual reasoning process about how its actions will affect
the other agents and then postulates actions that would enable it to achieve max-
imal destruction of the system. We design a reward function for an RL agent
to generate a long-term policy that replaces the original actions amt , ..., amt+l to
the best set of adversarial actions a∗mt , .., a∗mt+l. The RL agent would choose cer-
tain timesteps to attack instead of attacking each timestep based on how much
divergence the attack is expected to produce. To do so, the reward function is
crafted as follows:

ratt =

l∑
t

γt KL
(
p(a−m

t |amt , st) || p(a−m
t |a∗mt , st)

)
(14)

where a∗m represents the set of counterfactual actions to the action am generated
by the original policy of agent m, πm

θm , and γ is a discount factor. The attack
starts at timestep t, and l is the number of steps into the future when the
attacker wants the event to take place. Eq. (14) generates a combination of
actions a∗mt , ..., a∗mt+l for which the success rate is the highest possible. We train
this adversarial policy using DDPG.

Zero-Sum Attack: We train another RL agent to learn an adversarial policy
minimizing the global reward of the c-MARL system. We formulate this attack
as a single agent RL problem to minimize the cumulative reward for the whole
team as:

θm

∞∑
t=1

γtrt(st, a
∗m
t , a−m

t , st+1), (15)

where a∗mt is the compromised agent’s action at timestep t, θm parameterizes
the compromised agent’s policy, and rt is the global reward recovered by [6].
(a∗mt , a−m

t ) is sampled from (πm
θm , π−m

θ−m) in the white box setting. In the black
box setting, we sample from the approximated policies derived in Eq. (11) and
(12). With Eq. (15), we train an adversarial policy that selects actions for the
compromised agent that will minimize the reward r for the c-MARL team. In
our implementation, we use DDPG to train this adversarial policy.

4 Experiments and Results

This section describes the implementation of our attacks and discusses the ob-
tained results. 5

5 Our code and demos are available here:https://github.com/SarraAlqahtani22/MARL-
Robustness
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Fig. 3. The average episode rewards in 2 particle multi-agent environments (MAD-
DPG) and StarCraft2 (QMIX) under our attacks as a function of attack rate.

4.1 Experimental Setup

We evaluate the robustness of the MADDPG algorithm under our attacks in both
the white and black box settings in two particle environments [16]: cooperative
navigation and physical deception with variant attacking rates. In the cooper-
ative navigation environment, N cooperative agents must cover L landmarks,
and the agents must learn to reach separate landmarks without communicating
their observations to each other. In our experiments, we use N = L = 3. In the
physical deception environment, N cooperative agents try to fool one adversar-
ial agent. There are L total landmarks, with one being the ‘target’ landmark
and only the cooperative agents know which landmark is the target one. The
adversary must try to infer and reach the target landmark from the cooperative
agents’ positioning, and the cooperative agents must try to deceive the adversary
by spacing out. The cooperative agents are rewarded as long a single member of
their team reaches the target landmark. We use N = L = 2.

We evaluate the robustness of QMIX using StarCraft II, a real-time strategy
game where two teams of agents can fight against each other. We use the “3m”
SMAC map, which employs three “Marine” units on each team. A team wins by
shooting the enemy team enough to drain their health. Our team consists of three
cooperative agents working together to defeat the three enemy marines, which
use fixed policies. For our attacks, we control one of the cooperative marines,
and alter its actions using the aforementioned attack strategies.

4.2 Results and Discussion

We discuss the obtained results from two perspectives: the adversarial policies
and c-MARL team reward, and the qualitative performance and behavioral anal-
ysis of the agents.
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Table 1. The average number of occupied landmarks in the cooperative navigation,
average distance between the cooperative agents and target landmark in physical de-
ception [16], and win rate for the cooperative team in StarCraft II [18] for 25%, 50%,
75%, and 100% attack rates across all attack types in white and black box settings.

MADDPG: Cooperative Navigation (occupied landmarks)

White Box Black Box

Attack Rate Random Timed Counterfactual Zero-sum Random Timed Counterfactual Zero-sum

0% 1.611 1.611 1.611 1.611 1.611 1.611 1.611 1.611
25% 1.311 1.308 1.007 1.102 1.325 1.333 1.150 1.09
50% 0.958 0.955 0.786 0.868 1.058 1.048 1.002 0.847
75% 0.695 0.711 0.601 0.722 0.860 0.815 0.811 0.730
100% 0.502 0.562 0.489 0.573 0.502 0.688 0.547 0.519

MADDPG: Physical Deception (average distance)

White Box Black Box

Attack Rate Random Timed Counterfactual Zero-sum Random Timed Counterfactual Zero-sum

0% 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163
25% 0.225 0.418 0.196 0.188 0.200 0.343 0.182 0.175
50% 0.326 0.470 0.211 0.277 0.324 0.499 0.201 0.2
75% 0.515 0.607 0.264 0.297 0.530 0.614 0.235 0.243
100% 0.540 0.688 0.427 0.423 0.654 0.680 0.412 0.356

QMIX: StarCraft II (win rate)

White Box Black Box

Attack Rate Random Timed Counterfactual Zero-sum Random Timed Counterfactual Zero-sum

0% 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955
25% 0.32 0.18 0.190 0.210 0.475 0.135 0.135 0.528
50% 0.065 0.0 0.060 0.050 0.015 0.0 0.080 0.144
75% 0.01 0.0 0.0 0.000 0.0 0.0 0.030 0.04
100% 0.0 0.0 0.0 0.000 0.0 0.0 0.0 0.0

Adversarial Policies and Team Reward To learn an adversarial policy for
the compromised agent, we used the attack strategies explained in Section 3.3.
To evaluate the performance of each policy, we directly change the actions of the
compromised agent based on the output of the adversarial policy. We ran each
attack with different attack episode lengths starting at 0% and moving to 100%
by increments of 25%. We present the team average reward for the victim agents
in Fig. 3. As the attack rate increases, the team reward decreases, indicating that
each attack was successful at degrading the robustness of c-MARL algorithms.
The strategically-timed attack has the highest negative impact on the team re-
ward when the attack rate is higher. However, the zero-sum and counterfactual
reasoning-based attacks perform better with less attack rates in the cooperative
navigation environments.

In the physical deception environment, the strategically-timed attack achieved
86.6% and 85% reward drop for 100% attack rate in white-box and black-box set-
tings, respectively. In the cooperative navigation environment, the strategically-
timed attack achieved a reward drop of 33.1% and 33.0% for white-box and black-
box settings, respectively. In the StarCraft II environment, the strategically-
timed attack achieved a reward drop of 84% and 89.6% in the white-box and the
black-box settings, respectively. The strategically-timed attack is the strongest
because it attacks only at impactful timesteps as opposed to the randomly-timed
attack which attacks at random timesteps during the episode.

The counterfactual reasoning-based attack is able to achieve similar levels
of performance with respect to the strategically-timed attack in StarCraft. In
Cooperative Navigation, both the counterfactual and zero-sum achieve similar
performance as the strategically-timed attack, especially with low attack rates.
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Fig. 4. Screenshots from replayed episodes of the cooperative navigation environment
from MADDPG under the strategically-timed attack.

Fig. 5. Screenshots from replayed episodes of the cooperative navigation environment
from MADDPG under the counterfactual reasoning-based attack.

We believe since those environments are purely cooperative, the adversarial poli-
cies trained to directly sabotage other agents’ policies can better diminish the
robustness of the algorithms in cooperative settings. However, in the physical
deception environment that naturally involves an enemy, the counterfactual and
zero-sum attacks have the least impact on the team reward.

Although the results in Fig. 3 and Table 1 show that the counterfactual
reasoning-based attack succeeds, we observe an effect similar in nature to the
canonical imitation learning problem. As we start attacking the system using
the compromised agent’s counterfactual actions, the impact of the attack was
not as strong as the other attacks. We hypothesize that this is due to the in-
ability of the behavioral cloning model to accurately capture the other agents’
states that were not part of their optimal policies during reconnaissance. In
general, the canonical problem of imitation learning accumulates the learning
errors, resulting in the learner encountering unknown states [2]. Moreover, this
attack builds its adversarial policy based on predicting each agent’s action for a
sequence of timesteps then finds the counterfactual actions with maximum KL
divergence using those predictions. Hence, the prediction errors accumulate over
the timesteps and hinder the attack.

Qualitative Performance and Behavioral Analysis We evaluate the quali-
tative performance of c-MARL algorithms under our attacks using environment-
specific metrics. In the cooperative navigation environment, we measure the
average number of the occupied landmarks by the cooperative agents. In the
physical deception environment, we measure the average distance between the
cooperative agents and the target landmark. In StartCraft II, we use the team
win rate to evaluate the attack impact. Table 1 shows the performance of each at-
tack. In cooperative navigation, the number of occupied landmarks per timestep
decreases as the compromised agent deviates more from its optimal policy. Sim-
ilarly, in physical deception, the distance from the closest cooperative agent to
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Fig. 6. Screenshots from replayed episodes of the physical deception environment from
MADDPG under the strategically-timed attack. To the left, we see the beginning of
the episode where the cooperative agents are splitting over the target and non-target
landmarks. To the right, the compromised agent is moving away from the non-target
landmark, leaking the information to the adversary.

Fig. 7. Screenshots from replayed episodes of the physical deception environment from
MADDPG under the counterfactual reasoning-based attack. To the left, we see the
beginning of the episode. To the right, the compromised agent is moving away from
the non-target landmark at a perfect timing to leak the information to the adversary
which got the clue and moved towards the target.

the target landmark increases as we attack at more timesteps.
In StarCraft II, under the optimal QMIX policy, the c-MARL team of agents

wins the battle around 95% of the time. As shown in the last part of Table 1,
attacking during just 25% of timesteps can reduce the win rate by at least 18%
for the strategically-timed attack in a white-box setting, and 13% in the black-
box setting. In all attack strategies, a 100% attack rate decreases the win rate
to 0%, and in most attacks, a 75% attack rate also does that. Overall, under the
compromised agent attacks, the win rate decreases as the attack rate increases,
and even a small attack rate has significant impact on the QMIX robustness.

We show here the qualitative analysis of the cooperative navigation environ-
ment under the strategically-timed and counterfactual reasoning-based attacks,
chosen to represent the attacks in each category. During the strategically-timed
attack, the compromised agent immediately moves away from the landmarks to
prevent its teammates from covering all landmarks. In this environment, there
is not much room for the agents to recover from the compromised agent’s adver-
sarial actions. The left figure in Fig. 4 shows the beginning of the episode where
the agents attempt to cover the 3 landmarks (black circles). Then, in the right
figure, the compromised agent (within the red circle) is moving away from its
supposedly assigned landmark.

In the counterfactual reasoning-based attack, the compromised agent displays
interesting behaviors. The first behavior is shown in Fig. 5. The compromised
agent (pointed to with a red arrow) is moving away from the landmark just be-
fore its teammate(s) get to a landmark, which makes the affected agent (within
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Fig. 8. Screenshots from replayed episodes of StarCraft II. The compromised agent is
controlled by an adversarial policy trained with the strategically-timed attack (top)
and counterfactual reasoning-based attack (bottom).

a green circle) confused about which landmark to cover (stands in between the 2
empty landmarks for the remaining of the episode). This behavior suggests that
the compromised agent succeeds by manipulating its teammate’s observations
through its actions. We notice another behavior under this attack strategy where
the compromised agent moves to the same landmark that has been already cov-
ered by one of its teammate causing the team reward to decrease.

In the physical deception environment, during the strategically-timed attack,
we notice that when the compromised agent moves away from the non-target
landmark (Fig. 6), the other cooperative agent does not alter its behavior to
move away from the target. This is a robustness issue in the MADDPG al-
gorithm. Ideally, the agents should be robust enough to not have to rely on a
teammate who is not doing its job. Similarly, when the compromised agent leaves
the non-target landmark uncovered and moves towards the target landmark, the
adversary does not always take advantage of this clue (Fig. 7). The optimal be-
havior of the adversary would be to move towards the only landmark which is
being covered by a cooperative agent, instead it stands still. This behavior once
again shows a lack of robustness in the agents under our attack.

In the StarCraftII, during all attacks except the counterfactual reasoning-
based attack, we notice that the compromised agent moves away from its team
until its teammates get defeated. Then, it moves towards the enemies to get
killed. In the strategically-timed attack, the compromised agent runs away only
when its team is getting closer to the enemy (top of Fig. 8). In the counterfac-
tual reasoning-based attack, we notice that sometimes the compromised agent
is luring one of its teammates to start attacking the enemy team then it itself
runs away (bottom of Fig. 8) causing its team to get defeated.

5 Recommendations

The idea that slightly perturbing one compromised agent’s observations can re-
duce performance at such a large scale is alarming. With the seemingly heavy
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dependence on small fractions of the global observations, attackers can imple-
ment similar attacks to go virtually unnoticed by detection models. By only
compromising one agent, the entire system will be affected. And without reli-
able detection, it is clear that these attacks can be devastating.

The naive remedy once a compromised agent has been detected is to exclude
it from the team and mark it as an adversary. However, the deviation in one
agent’s behavior could occur due to a security threat or its lack of knowledge
about the environment which is reasonable considering the limited vision range
and communication bandwidth in MARL systems. Thus, we think it is critical
to extend the assured RL (ARL) techniques into c-MARL by embedding real-
time formal verification methods in c-MARL algorithms, which would shield
the agents from reaching the dangerous states by training them to trade off
between performance and security/safety in the environments containing either
malicious (adversarial) or faulty (dysfunctional) agents. Those methods should
be developed for run-time verification focusing only on the agent’s time-bounded,
short-term behavior for scalability. This will increase the robustness of MARL
systems functioning in uncertain and unpredictable environments.

To solve the non-correlated factorization problem of the MARL centralized
learning-decentralized execution paradigm, the other agents’ actions were taken
into consideration by decoupling the joint policy as a correlated policy condi-
tioned on the environment state and other agents’ actions [23, 9, 22]. Those al-
gorithms assume that agents participating in a joint activity act rationally and
cooperate to achieve shared goals. However, relying only on this assumption to
achieve joint goals without the establishment and reinforcement of trust opens a
vulnerability similar to the one discussed here. Hence, studying the compromised
agent vulnerability in this paradigm of c-MARL algorithms becomes essential.

6 Conclusion

We investigate the maleficence of c-MARL by targeting and weaponizing one
agent, termed compromised, to follow an adversarial policy that pushes the acti-
vation of the cooperating agents’ policy networks off distribution. We proposed
four attack strategies to control the compromised agent: 1) randomly-timed at-
tack, 2) strategically timed attack, 3) counterfactual reasoning-based attack, and
4) zero-sum attack. Our attacks reduce the overall team reward in all environ-
ments by at least 33% and at most 89.6%. In future work, we intend to develop
more robust c-MARL algorithms by accounting for the compromised agent vul-
nerability during training. This will increase the robustness of c-MARL systems
functioning in uncertain environments. Moreover, our attacks can be utilized
to evaluate the robustness of c-MARL algorithms. We will make our code and
demos available in the final submission.
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